Package: carbondate (via r-universe)

October 31, 2024

Title Calibration and Summarisation of Radiocarbon Dates

Version 1.0.1

Description Performs Bayesian non-parametric calibration of multiple related radiocarbon determinations, and summarises the calendar age information to plot their joint calendar age density (see Heaton (2022) <doi:10.1111/rssc.12599>). Also models the occurrence of radiocarbon samples as a variable-rate (inhomogeneous) Poisson process, plotting the posterior estimate for the occurrence rate of the samples over calendar time, and providing information about potential change points.

```
License GPL (>= 3)
Encoding UTF-8
Roxygen list(markdown = TRUE)
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3
Depends R (>= 3.5.0)
LazyData true
Imports graphics, grDevices, stats, utils
URL https://github.com/TJHeaton/carbondate,
     https://tjheaton.github.io/carbondate/
BugReports https://github.com/TJHeaton/carbondate/issues
VignetteBuilder knitr
LinkingTo cpp11
RoxygenNote 7.2.3
Repository https://tjheaton.r-universe.dev
RemoteUrl https://github.com/tjheaton/carbondate
RemoteRef HEAD
```

RemoteSha 070f528972dc580e92d51ca2df7e7e6384f88f61

2 Contents

Contents

Index

alces	3
armit	3
bison	4
buchanan	5
CalibrateSingleDetermination	5
cervus	8
equus	9
FindPosteriorMeanRate	9
FindPredictiveCalendarAgeDensity	11
FindSummedProbabilityDistribution	13
GenerateOxcalCode	15
human	17
intcal04	17
intcal09	18
intcal13	19
intcal20	20
intcal98	21
InterpolateCalibrationCurve	22
kerr	23
mammuthus	24
PlotCalendarAgeDensityIndividualSample	24
PlotConvergenceData	27
PlotGelmanRubinDiagnosticMultiChain	28
PlotGelmanRubinDiagnosticSingleChain	29
PlotNumberOfClusters	31
PlotNumberOfInternalChanges	32
PlotPosteriorChangePoints	33
PlotPosteriorHeights	35
PlotPosteriorMeanRate	36
PlotPredictiveCalendarAgeDensity	39
PolyaUrnBivarDirichlet	41
PPcalibrate	46
pp_uniform_phase	49
shcal04	50
shcal13	51
shcal20	52
two_normals	53
WalkerBivarDirichlet	54
	59

alces 3

alces

Example real-life data - Alces in Yukon and Alaska

Description

58 radiocarbon determinations collated by Dale Guthrie, R. related to Alces (moose) in Yukon and Alaska. Samples are restricted to those between 25,000–6000 ¹⁴C yrs BP.

Reference:

Dale Guthrie, R. New carbon dates link climatic change with human colonization and Pleistocene extinctions. *Nature* **441**, 207–209 (2006). https://doi.org/10.1038/nature04604

Usage

alces

Format

alces:

A data frame with 58 rows and 7 columns:

lab_code The sample code for the ¹⁴C laboratory

site_code The site/museum code

location The location of the sample

c14_age The observed ¹⁴C ages of the samples (in ¹⁴C yr BP)

c14_sig The uncertainty in the observed ¹⁴C ages reported by the radiocarbon laboratory

f14c The observed F¹⁴C concentrations

f14c_sig The uncertainty in the observed F¹⁴C concentrations reported by the radiocarbon laboratory

Source

https://doi.org/10.1038/nature04604

armit

Example real-life data - Population Decline in Iron Age Ireland

Description

2021 radiocarbon determinations collated by Armit et al. from archaeological groups operating in Ireland, to investigate whether a wetter environment around 2700 cal yr BP led to a population collapse.

Reference:

Armit, I., Swindles, G.T., Becker, K., Plunkett, G., Blaauw, M., 2014. Rapid climate change did not cause population collapse at the end of the European Bronze Age. *Proceedings of the National Academy of Sciences* **111**, 17045–17049.

4 bison

Usage

armit

Format

armit:

A data frame with 2021 rows and 4 columns:

c14_age The observed ¹⁴C ages of the samples (in ¹⁴C yr BP)

c14_sig The uncertainty in the observed ¹⁴C ages reported by the radiocarbon laboratory

f14c The observed F¹⁴C concentrations

 ${f f14c_sig}$ The uncertainty in the observed $F^{14}C$ concentrations reported by the radiocarbon laboratory

Source

http://doi.org/10.1073/pnas.1408028111

bison

Example real-life data - Bison in Yukon and Alaska

Description

64 radiocarbon determinations collated by Dale Guthrie, R. related to Bison in Yukon and Alaska. Samples are restricted to those between 25,000–6000 ¹⁴C yrs BP.

Reference:

Dale Guthrie, R. New carbon dates link climatic change with human colonization and Pleistocene extinctions. *Nature* **441**, 207–209 (2006). https://doi.org/10.1038/nature04604

Usage

bison

Format

bison:

A data frame with 64 rows and 7 columns:

lab_code The sample code for the ¹⁴C laboratory

site_code The site/museum code

location The location of the sample

c14_age The observed ¹⁴C ages of the samples (in ¹⁴C yr BP)

c14_sig The uncertainty in the observed ¹⁴C ages reported by the radiocarbon laboratory

f14c The observed F¹⁴C concentrations

f14c_sig The uncertainty in the observed F¹⁴C concentrations reported by the radiocarbon laboratory

buchanan 5

Source

https://doi.org/10.1038/nature04604

buchanan

Example real-life data - Palaeo-Indian demography

Description

628 radiocarbon determinations collated by Buchanan et al. representing the ages of distinct archaeological sites found across Canada and North America during the time of the palaeoindians.

Reference:

Buchanan, B., Collard, M., Edinborough, K., 2008. Paleoindian demography and the extraterrestrial impact hypothesis. *Proceedings of the National Academy of Sciences* **105**, 11651–11654.

Usage

buchanan

Format

buchanan:

A data frame with 628 rows and 4 columns:

c14_age The observed ¹⁴C ages of the samples (in ¹⁴C yr BP)

c14_sig The uncertainty in the observed ¹⁴C ages reported by the radiocarbon laboratory

f14c The observed F¹⁴C concentrations

 ${\bf f14c_sig}$ The uncertainty in the observed ${\bf F^{14}C}$ concentrations reported by the radiocarbon laboratory

Source

http://doi.org/10.1073/pnas.0803762105

 ${\tt CalibrateSingleDetermination}$

Calibrate a Single Radiocarbon Determination

Description

Uses the supplied calibration curve to calibrate a single radiocarbon determination and uncertainty (expressed either in terms of radiocarbon age, or as an $F^{14}C$ concentration) and obtain its calendar age probability density estimate.

Usage

```
CalibrateSingleDetermination(
  rc_determination,
  rc_sigma,
  calibration_curve,
  F14C_inputs = FALSE,
  resolution = 1,
  plot_output = FALSE,
  plot_cal_age_scale = "BP",
  interval_width = "2sigma",
  bespoke_probability = NA,
  denscale = 3,
  plot_pretty = TRUE
)
```

Arguments

rc_determination

A single observed radiocarbon determination provided either as the radiocarbon age (in ¹⁴C yr BP) or the F¹⁴C concentration.

rc_sigma

The corresponding measurement uncertainty of the radiocarbon determination (must be in the same units as above, i.e., reported as ¹⁴C age or F¹⁴C)

calibration_curve

A dataframe which must contain one column calendar_age_BP, and also columns c14_age and c14_sig or f14c and f14c_sig (or both sets). This format matches the curves supplied with this package, e.g., intcal20, intcal13, which contain all 5 columns.

F14C_inputs

TRUE if the provided rc_determination is an F¹⁴C concentration and FALSE if it is a radiocarbon age. Defaults to FALSE.

resolution

The distance between the calendar ages at which to calculate the calendar age probability. Default is 1.

plot_output

TRUE if you wish to plot the determination, the calibration curve, and the posterior calibrated age estimate on the same plot. Defaults to FALSE

plot_cal_age_scale

Only for usage when plot_output = TRUE. The calendar scale to use for the x-axis. Allowed values are "BP", "AD" and "BC". The default is "BP", corresponding to plotting in cal yr BP.

interval_width Only for usage when plot_output = TRUE. The confidence intervals to show for the calibration curve and for the highest posterior density ranges. Choose from one of "1sigma" (68.3%), "2sigma" (95.4%) and "bespoke". Default is

bespoke_probability

The probability to use for the confidence interval if "bespoke" is chosen above. E.g. if 0.95 is chosen, then the 95% confidence interval is calculated. Ignored if "bespoke" is not chosen.

denscale Whether to scale the vertical range of the calendar age density plot relative to the

calibration curve plot (optional). Default is $\boldsymbol{3}$ which means that the maximum

calendar age density will be at 1/3 of the height of the plot.

plot_pretty logical, defaulting to TRUE. If set TRUE then will select pretty plotting margins

(that create sufficient space for axis titles and rotates y-axis labels). If FALSE

will implement current user values.

Value

A data frame with one column calendar_age_BP containing the calendar ages, and the other column probability containing the probability at that calendar age.

Examples

```
# Calibration of a single determination expressed as 14C age BP
calib <- CalibrateSingleDetermination(860, 35, intcal20)</pre>
plot(calib, type = "l", xlim = c(1000, 600))
# Incorporating an automated plot to visualise the calibration
CalibrateSingleDetermination(860, 35, intcal20, plot_output = TRUE)
# Calibration of a single (old) determination expressed as 14C age BP
calib <- CalibrateSingleDetermination(31020, 100, intcal20)</pre>
plot(calib, type = "l", xlim = c(36500, 34500))
# Calibration of a single (old) determination expressed as F14C concentration
calib <- CalibrateSingleDetermination(</pre>
    0.02103493, 0.0002618564, intcal20, F14C_inputs = TRUE)
plot(calib, type = "l", xlim = c(36500, 34500))
# Calibration of a single determination expressed as 14C age BP
# against SHCal20 (and creating an automated plot)
CalibrateSingleDetermination(1413, 25, shcal20, plot_output = TRUE)
# Implementing a bespoke confidence interval level and plot in AD
CalibrateSingleDetermination(
    1413,
    25,
    shcal20,
    plot_output = TRUE,
    plot_cal_age_scale = "AD",
    interval_width = "bespoke",
    bespoke_probability = 0.8)
# Changing denscale (so the calendar age density takes up less space)
CalibrateSingleDetermination(
    1413,
    25,
    shcal20,
    plot_output = TRUE,
    interval_width = "bespoke",
    bespoke_probability = 0.8,
```

8 cervus

denscale = 5)

cervus

Example real-life data - Cervus in Yukon and Alaska

Description

63 radiocarbon determinations collated by Dale Guthrie, R. related to Cervus (wapiti) in Yukon and Alaska. Samples are restricted to those between 25,000–6000 ¹⁴C yrs BP.

Reference:

Dale Guthrie, R. New carbon dates link climatic change with human colonization and Pleistocene extinctions. *Nature* **441**, 207–209 (2006). https://doi.org/10.1038/nature04604

Usage

cervus

Format

cervus:

A data frame with 63 rows and 7 columns:

lab_code The sample code for the ¹⁴C laboratory

site_code The site/museum code

location The location of the sample

c14_age The observed ¹⁴C ages of the samples (in ¹⁴C yr BP)

c14_sig The uncertainty in the observed ¹⁴C ages reported by the radiocarbon laboratory

f14c The observed F¹⁴C concentrations

f14c_sig The uncertainty in the observed F¹⁴C concentrations reported by the radiocarbon laboratory

Source

https://doi.org/10.1038/nature04604

equus 9

equus

Example real-life data - Equus in Yukon and Alaska

Description

84 radiocarbon determinations collated by Dale Guthrie, R. related to Equus (horse) in Yukon and Alaska. Samples are restricted to those between 25,000–6000 ¹⁴C yrs BP.

Reference:

Dale Guthrie, R. New carbon dates link climatic change with human colonization and Pleistocene extinctions. *Nature* **441**, 207–209 (2006). https://doi.org/10.1038/nature04604

Usage

equus

Format

equus:

A data frame with 84 rows and 7 columns:

lab code The sample code for the ¹⁴C laboratory

site code The site/museum code

location The location of the sample

c14_age The observed ¹⁴C ages of the samples (in ¹⁴C yr BP)

c14_sig The uncertainty in the observed ¹⁴C ages reported by the radiocarbon laboratory

f14c The observed F¹⁴C concentrations

 ${\bf f14c_sig}$ The uncertainty in the observed ${\bf F^{14}C}$ concentrations reported by the radiocarbon laboratory

Source

https://doi.org/10.1038/nature04604

FindPosteriorMeanRate Find Posterior Mean Rate of Sample Occurrence for Poisson Process Model

Description

Given output from the Poisson process fitting function PPcalibrate calculate the posterior mean rate of sample occurrence (i.e., the underlying Poisson process rate $\lambda(t)$) together with specified probability intervals, on a given calendar age grid (provided in cal yr BP).

Note: If you want to calculate and plot the result, use PlotPosteriorMeanRate instead.

For more information read the vignette:

vignette("Poisson-process-modelling", package = "carbondate")

10 FindPosteriorMeanRate

Usage

```
FindPosteriorMeanRate(
  output_data,
  calendar_age_sequence,
  n_posterior_samples = 5000,
  interval_width = "2sigma",
  bespoke_probability = NA,
  n_burn = NA,
  n_{end} = NA
)
```

Arguments

output_data

The return value from the updating function PPcalibrate. Optionally, the output data can have an extra list item named label which is used to set the label on the plot legend.

calendar_age_sequence

A vector containing the calendar age grid (in cal yr BP) on which to calculate the posterior mean rate.

n_posterior_samples

Number of samples it will draw, after having removed n_burn, from the (thinned) MCMC realisations stored in output_data to estimate the rate $\lambda(t)$. These samples may be repeats if the number of, post burn-in, realisations is less than n_posterior_samples. If not given, 5000 is used.

interval_width The confidence intervals to show for both the calibration curve and the predictive density. Choose from one of "1sigma" (68.3%), "2sigma" (95.4%) and "bespoke". Default is "2sigma".

bespoke_probability

The probability to use for the confidence interval if "bespoke" is chosen above. E.g., if 0.95 is chosen, then the 95% confidence interval is calculated. Ignored if "bespoke" is not chosen.

n_burn

The number of MCMC iterations that should be discarded as burn-in (i.e., considered to be occurring before the MCMC has converged). This relates to the number of iterations (n_iter) when running the original update functions (not the thinned output_data). Any MCMC iterations before this are not used in the calculations. If not given, the first half of the MCMC chain is discarded. Note: The maximum value that the function will allow is n_iter - 100 * n_thin (where n_iter and n_thin are the arguments that were given to PPcalibrate) which would leave only 100 of the (thinned) values in output_data.

n_end

The last iteration in the original MCMC chain to use in the calculations. Assumed to be the total number of iterations performed, i.e. n_iter, if not given.

Value

A list, each item containing a data frame of the calendar_age_BP, the rate_mean and the confidence intervals for the rate - rate_ci_lower and rate_ci_upper.

See Also

PlotPosteriorMeanRate

Examples

```
# NOTE: All these examples are shown with a small n_iter and n_posterior_samples
# to speed up execution.
# Try n_iter and n_posterior_samples as the function defaults.

pp_output <- PPcalibrate(
    pp_uniform_phase$c14_age,
    pp_uniform_phase$c14_sig,
    intcal20,
    n_iter = 1000,
    show_progress = FALSE)

# Default plot with 2 sigma interval
FindPosteriorMeanRate(pp_output, seq(450, 640, length=10), n_posterior_samples = 100)</pre>
```

FindPredictiveCalendarAgeDensity

Find Predictive Estimate of Shared Calendar Age Density from Bayesian Non-Parametric DPMM Output

Description

Given output from one of the Bayesian non-parametric summarisation functions (either PolyaUrn-BivarDirichlet or WalkerBivarDirichlet) calculate the predictive (summarised/shared) calendar age density and probability intervals on a given calendar age grid (provided in cal yr BP).

Note: If you want to calculate and plot the result, use PlotPredictiveCalendarAgeDensity instead.

Usage

```
FindPredictiveCalendarAgeDensity(
  output_data,
  calendar_age_sequence,
  n_posterior_samples = 5000,
  interval_width = "2sigma",
  bespoke_probability = NA,
  n_burn = NA,
  n_end = NA
)
```

Arguments

output_data

The return value from one of the Bayesian non-parametric DPMM functions, e.g. PolyaUrnBivarDirichlet or WalkerBivarDirichlet, or a list, each item containing one of these return values. Optionally, the output data can have an extra list item named label which is used to set the label on the plot legend.

calendar_age_sequence

A vector containing the calendar age grid (in cal yr BP) on which to calculate the predictive (summarised/shared) density.

n_posterior_samples

Number of samples it will draw, after having removed n_burn, from the (thinned) realisations stored in the DPMM outputs to estimate the predictive calendar age density. These samples may be repeats if the number of, post burn-in, realisations is less than n_posterior_samples. If not given, 5000 is used.

interval_width The confidence intervals to show for both the calibration curve and the predictive density. Choose from one of "1sigma" (68.3%), "2sigma" (95.4%) and

"bespoke". Default is "2sigma". bespoke_probability

The probability to use for the confidence interval if "bespoke" is chosen above. E.g., if 0.95 is chosen, then the 95% confidence interval is calculated. Ignored if "bespoke" is not chosen.

The number of MCMC iterations that should be discarded as burn-in (i.e., considered to be occurring before the MCMC has converged). This relates to the number of iterations (n_iter) when running the original update functions (not the thinned output_data). Any MCMC iterations before this are not used

in the calculations. If not given, the first half of the MCMC chain is discarded. Note: The maximum value that the function will allow is n_iter - 100 * n_thin (where n_iter and n_thin are the arguments given to PolyaU-rnBivarDirichlet or WalkerBivarDirichlet) which would leave only 100 of the

(thinned) values in output_data.

The last iteration in the original MCMC chain to use in the calculations. Assumed to be the total number of iterations performed, i.e. n_iter, if not given.

Value

A data frame of the calendar_age_BP, the density_mean and the confidence intervals for the density_ci_lower and density_ci_upper.

See Also

PlotPredictiveCalendarAgeDensity

Examples

- # NOTE: All these examples are shown with a small n_iter and n_posterior_samples
- # to speed up execution.
- # Try n_iter and n_posterior_samples as the function defaults.
- # First generate output data

n_burn

n_end

```
polya_urn_output <- PolyaUrnBivarDirichlet(
    two_normals$c14_age,
    two_normals$c14_sig,
    intcal20,
    n_iter = 100,
    show_progress = FALSE)

# Find results for example output, 2-sigma confidence interval (default)
FindPredictiveCalendarAgeDensity(
    polya_urn_output, seq(3600, 4700, length=12), n_posterior_samples = 500)</pre>
```

FindSummedProbabilityDistribution

Find the summed probability distribution (SPD) for a set of radiocarbon observations

Description

Takes a set of radiocarbon determinations and uncertainties, independently calibrates each one, and then averages the resultant calendar age estimates to give the SPD estimate.

Important: This function should not be used for inference as SPDs are not statistically rigorous. Instead use either of:

- the Bayesian non-parametric summarisation approaches PolyaUrnBivarDirichlet or Walker-BivarDirichlet;
- or the Poisson process rate approach PPcalibrate

The SPD function provided here is only intended for comparison. We provide a inbuilt plotting option to show the SPD alongside the determinations and the calibration curve.

Usage

```
FindSummedProbabilityDistribution(
   calendar_age_range_BP,
   rc_determinations,
   rc_sigmas,
   calibration_curve,
   F14C_inputs = FALSE,
   resolution = 1,
   plot_output = FALSE,
   plot_cal_age_scale = "BP",
   interval_width = "2sigma",
   bespoke_probability = NA,
   denscale = 3,
   plot_pretty = TRUE
)
```

Arguments

calendar_age_range_BP

A vector of length 2 with the start and end calendar age BP to calculate the SPD over. These two values must be in order with start value less than end value, e.g., (600, 1700) cal yr BP. The code will extend this range (by 400 cal yrs each side) for conservativeness

rc_determinations

A vector of observed radiocarbon determinations. Can be provided either as ¹⁴C ages (in ¹⁴C yr BP) or as F¹⁴C concentrations.

rc_sigmas A vector of the (1-sigma) measurement uncertainties for the radiocarbon determinations. Must be the same length as rc_determinations and given in the same units.

calibration_curve

A dataframe which must contain one column calendar_age_BP, and also columns c14_age and c14_sig or f14c and f14c_sig (or both sets). This format matches the curves supplied with this package, e.g., intcal20, intcal13, which contain all 5 columns.

F14C_inputs TRUE if the provided rc_determinations are $F^{14}C$ concentrations and FALSE if they are radiocarbon ages. Defaults to FALSE.

resolution The distance between the calendar ages at which to calculate the calendar age probability. Default is 1.

plot_output TRUE if you wish to plot the determinations, the calibration curve, and the SPD on the same plot. Defaults to FALSE

plot_cal_age_scale

Only for usage when plot_output = TRUE. The calendar scale to use for the x-axis. Allowed values are "BP", "AD" and "BC". The default is "BP", corresponding to plotting in cal yr BP.

interval_width Only for usage when plot_output = TRUE. The confidence intervals to show for the calibration curve. Choose from one of "1sigma" (68.3%), "2sigma" (95.4%) and "bespoke". Default is "2sigma".

bespoke_probability

plot_pretty

The probability to use for the confidence interval if "bespoke" is chosen above. E.g. if 0.95 is chosen, then the 95% confidence interval is calculated. Ignored if "bespoke" is not chosen.

denscale Whether to scale the vertical range of the calendar age density plot relative to the calibration curve plot (optional). Default is 3 which means that the maximum SPD will be at 1/3 of the height of the plot.

logical, defaulting to TRUE. If set TRUE then will select pretty plotting margins (that create sufficient space for axis titles and rotates y-axis labels). If FALSE will implement current user values.

Value

A data frame with one column calendar_age_BP containing the calendar ages, and the other column probability containing the probability at that calendar age

GenerateOxcalCode 15

See Also

PolyaUrnBivarDirichlet, WalkerBivarDirichlet for rigorous non-parametric Bayesian alternatives; and PPcalibrate for a rigorous variable-rate Poisson process alternative.

Examples

```
# An example using 14C age BP and the IntCal 20 curve
SPD <- FindSummedProbabilityDistribution(</pre>
  calendar_age_range_BP=c(400, 1700),
  rc_determinations=c(602, 805, 1554),
  rc_sigmas=c(35, 34, 45),
   calibration_curve=intcal20)
plot(SPD, type = "1",
  xlim = rev(range(SPD$calendar_age_BP)),
  xlab = "Calendar Age (cal yr BP)")
# Using the inbuilt plotting features
SPD <- FindSummedProbabilityDistribution(</pre>
   calendar_age_range_BP=c(400, 1700),
  rc_determinations=c(602, 805, 1554),
  rc_sigmas=c(35, 34, 45),
  calibration_curve=intcal20,
  plot_output = TRUE,
   interval_width = "bespoke",
  bespoke_probability = 0.8)
# An different example using F14C concentrations and the IntCal 13 curve
SPD <- FindSummedProbabilityDistribution(</pre>
  calendar_age_range_BP=c(400, 2100),
  rc_determinations=c(0.8, 0.85, 0.9),
  rc_sigmas=c(0.01, 0.015, 0.012),
  F14C_inputs=TRUE,
  calibration_curve=intcal13)
plot(SPD, type = "1",
  xlim = rev(range(SPD$calendar_age_BP)),
  xlab = "Calendar Age (cal yr BP)")
```

GenerateOxcalCode

Outputs code suitable for running in OxCal from a series of radiocarbon determinations

Description

Outputs code suitable for running in OxCal from a series of radiocarbon determinations that can be given as either ¹⁴C age or F¹⁴C.

16 GenerateOxcalCode

Usage

```
GenerateOxcalCode(
  model_name,
  rc_determinations,
  rc_sigmas,
  rc_names = NULL,
  F14C_inputs = FALSE,
  outfile_path = NULL
)
```

Arguments

model_name The name given to the model in the OxCal code.

rc_determinations

A vector of observed radiocarbon determinations. Can be provided either as ¹⁴C

ages (in ¹⁴C yr BP) or as F¹⁴C concentrations.

rc_sigmas A vector of the (1-sigma) measurement uncertainties for the radiocarbon deter-

minations. Must be the same length as rc_determinations and given in the

same units.

rc_names Optional. The name of each data point - if given it must be the same length of

rc determinations.

F14C_inputs TRUE if the provided rc_determinations are $F^{14}C$ concentrations and FALSE if

they are radiocarbon ages. Defaults to FALSE.

outfile_path Optional. If given the OxCal code will be output to the file at the path given,

otherwise it will be output to the terminal.

Value

None

Examples

```
# Generate names automatically and outputs to the screen for 14C ages
GenerateOxcalCode("My_data", c(1123, 1128, 1135), c(32, 24, 25))
# Provide name automatically and outputs to the screen for F14C concentrations
GenerateOxcalCode(
   "My_data",
   c(0.832, 0.850, 0.846),
   c(0.004, 0.003, 0.009),
   c("P-1", "P-2", "P-3"),
   F14C_inputs=TRUE)
```

human 17

human

Example real-life data - Humans in Yukon and Alaska

Description

46 radiocarbon determinations collated by Dale Guthrie, R. related to archaeological sites (i.e., evidence of human existence) in Alaska. Samples are restricted to those between $25,000-6000^{-14}$ C yrs BP.

Reference:

Dale Guthrie, R. New carbon dates link climatic change with human colonization and Pleistocene extinctions. *Nature* **441**, 207–209 (2006). https://doi.org/10.1038/nature04604

Usage

human

Format

human:

A data frame with 46 rows and 7 columns:

lab_code The sample code for the ¹⁴C laboratory

site_code The site/museum code

location The location of the sample

c14_age The observed ¹⁴C ages of the samples (in ¹⁴C yr BP)

c14_sig The uncertainty in the observed ¹⁴C ages reported by the radiocarbon laboratory

f14c The observed F¹⁴C concentrations

 $\mathbf{f14c_sig}$ The uncertainty in the observed $F^{14}C$ concentrations reported by the radiocarbon laboratory

Source

https://doi.org/10.1038/nature04604

intcal04

IntCal04 calibration curve

18 intcal09

Description

The IntCal04 Northern Hemisphere radiocarbon age calibration curve on a calendar grid spanning from 26,000–0 cal yr BP (Before Present, 0 cal yr BP corresponds to 1950 CE).

Note: This dataset provides 14 C ages and F^{14} C values on a calendar age grid. This is different from the 14 C ages and Δ^{14} C values provided in oxcal .14c files.

Reference:

PJ Reimer, MGL Baillie, E Bard, A Bayliss, JW Beck, C Bertrand, PG Blackwell, CE Buck, G Burr, KB Cutler, PE Damon, RL Edwards, RG Fairbanks, M Friedrich, TP Guilderson, KA Hughen, B Kromer, FG McCormac, S Manning, C Bronk Ramsey, RW Reimer, S Remmele, JR Southon, M Stuiver, S Talamo, FW Taylor, J van der Plicht, and CE Weyhenmeyer. 2004. Intcal04 Terrestrial Radiocarbon Age Calibration, 0–26 Cal Kyr BP. *Radiocarbon* 46(3):1029-1058 https://doi.org/10.1017/S0033822200032999.

Usage

intcal04

Format

intcal04:

A data frame with 3,301 rows and 5 columns providing the IntCal04 radiocarbon age calibration curve on a calendar grid spanning from 26,000–0 cal yr BP:

```
calendar_age The calendar age (in cal yr BP)
c14 age The <sup>14</sup>C age (in <sup>14</sup>C yr BP)
```

c14_sig The $(1-\sigma)$ uncertainty in the ¹⁴C age

f14c The ¹⁴C age expressed as F¹⁴C concentration

f14c_sig The $(1-\sigma)$ uncertainty in the $F^{14}C$ concentration

Source

https://doi.org/10.1017/S0033822200032999

intcal09

IntCal09 calibration curve

Description

The IntCal09 Northern Hemisphere radiocarbon age calibration curve on a calendar grid spanning from 50,000–0 cal yr BP (Before Present, 0 cal yr BP corresponds to 1950 CE).

Note: This dataset provides 14 C ages and F^{14} C values on a calendar age grid. This is different from the 14 C ages and Δ^{14} C values provided in oxcal .14c files.

intcal13 19

Reference:

PJ Reimer, MGL Baillie, E Bard, A Bayliss, JW Beck, PG Blackwell, C Bronk Ramsey, CE Buck, GS Burr, RL Edwards, M Friedrich, PM Grootes, TP Guilderson, I Hajdas, TJ Heaton, AG Hogg, KA Hughen, KF Kaiser, B Kromer, FG McCormac, SW Manning, RW Reimer, DA Richards, JR Southon, S Talamo, CSM Turney, J van der Plicht, CE Weyhenmeyer. 2009. IntCal09 and Marine09 Radiocarbon Age Calibration Curves, 0–50,000 Years cal BP *Radiocarbon* 51(4):1111-1150 https://doi.org/10.1017/S0033822200034202.

Usage

intcal09

Format

intcal09:

A data frame with 3,521 rows and 5 columns providing the IntCal09 radiocarbon age calibration curve on a calendar grid spanning from 50,000–0 cal yr BP:

```
calendar_age The calendar age (in cal yr BP)

c14_age The <sup>14</sup>C age (in <sup>14</sup>C yr BP)

c14_sig The (1-\sigma) uncertainty in the <sup>14</sup>C age

f14c The <sup>14</sup>C age expressed as F<sup>14</sup>C concentration

f14c sig The (1-\sigma) uncertainty in the F<sup>14</sup>C concentration
```

Source

http://doi.org/10.1017/S0033822200034202

intcal13

IntCal13 calibration curve

Description

The IntCal13 Northern Hemisphere radiocarbon age calibration curve on a calendar grid spanning from 50,000–0 cal yr BP (Before Present, 0 cal yr BP corresponds to 1950 CE).

Note: This dataset provides 14 C ages and F^{14} C values on a calendar age grid. This is different from the 14 C ages and Δ^{14} C values provided in oxcal .14c files.

Reference:

Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatt? C, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM, van der Plicht J. 2013. IntCal13 and Marine 13 radiocarbon age

20 intcal20

calibration curves 0-50000 years calBP. Radiocarbon 55(4) https://doi.org/10.2458/azu_js_rc.55.16947.

Usage

intcal13

Format

intcal13:

A data frame with 5,141 rows and 5 columns providing the IntCal13 radiocarbon age calibration curve on a calendar grid spanning from 50,000–0 cal yr BP:

```
calendar_age The calendar age (in cal yr BP)

c14_age The <sup>14</sup>C age (in <sup>14</sup>C yr BP)

c14_sig The (1-\sigma) uncertainty in the <sup>14</sup>C age

f14c The <sup>14</sup>C age expressed as F<sup>14</sup>C concentration

f14c sig The (1-\sigma) uncertainty in the F<sup>14</sup>C concentration
```

Source

http://doi.org/10.2458/azu_js_rc.55.16947

intcal20

IntCal20 calibration curve

Description

The IntCal20 Northern Hemisphere radiocarbon age calibration curve on a calendar grid spanning from 55,000–0 cal yr BP (Before Present, 0 cal yr BP corresponds to 1950 CE).

Note: This dataset provides 14 C ages and F^{14} C values on a calendar age grid. This is different from the 14 C ages and Δ^{14} C values provided in oxcal .14c files.

Reference:

Reimer PJ, Austin WEN, Bard E, Bayliss A, Blackwell PG, Bronk Ramsey C, Butzin M, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kromer B, Manning SW, Muscheler R, Palmer JG, Pearson C, van der Plicht J, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM, Wacker L, Adolphi F, Büntgen U, Capano M, Fahrni S, Fogtmann-Schulz A, Friedrich R, Köhler P, Kudsk S, Miyake F, Olsen J, Reinig F, Sakamoto M, Sookdeo A, Talamo S. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP). *Radiocarbon* **62** https://doi.org/10.1017/RDC.2020.41.

Usage

intcal20

intcal98

Format

intcal20:

A data frame with 9,501 rows and 5 columns providing the IntCal20 radiocarbon age calibration curve on a calendar grid spanning from 55,000–0 cal yr BP:

```
calendar_age The calendar age (in cal yr BP) c14_age The <sup>14</sup>C age (in <sup>14</sup>C yr BP) c14_sig The (1-\sigma) uncertainty in the <sup>14</sup>C age f14c The <sup>14</sup>C age expressed as F<sup>14</sup>C concentration f14c_sig The (1-\sigma) uncertainty in the F<sup>14</sup>C concentration
```

Source

http://doi.org/10.1017/RDC.2020.41

intcal98

IntCal98 calibration curve

Description

The IntCal98 Northern Hemisphere radiocarbon age calibration curve on a calendar grid spanning from 24,000–0 cal yr BP (Before Present, 0 cal yr BP corresponds to 1950 CE).

Note: This dataset provides 14 C ages and F^{14} C values on a calendar age grid. This is different from the 14 C ages and Δ^{14} C values provided in oxcal .14c files.

Reference:

M. Stuiver, P. J. Reimer, E. Bard, J. W. Beck, G. S. Burr, K. A. Hughen, B. Kromer, F. G. McCormac, J. v. d. Plicht and M. Spurk. 1998. INTCAL98 Radiocarbon Age Calibration, 24,000–0 cal BP. *Radiocarbon* 40(3):1041-1083 https://doi.org/10.1017/S0033822200019123.

Usage

intcal98

Format

intcal98:

A data frame with 1,538 rows and 5 columns providing the IntCal98 radiocarbon age calibration curve on a calendar grid spanning from 24,000–0 cal yr BP:

```
calendar_age The calendar age (in cal yr BP) c14_age The <sup>14</sup>C age (in <sup>14</sup>C yr BP) c14_sig The (1-\sigma) uncertainty in the <sup>14</sup>C age f14c The <sup>14</sup>C age expressed as F<sup>14</sup>C concentration f14c_sig The (1-\sigma) uncertainty in the F<sup>14</sup>C concentration
```

Source

https://doi.org/10.1017/S0033822200019123

InterpolateCalibrationCurve

Interpolate a calibration curve at a set of calendar ages

Description

Interpolate a calibration curve at a set of calendar ages

Usage

```
InterpolateCalibrationCurve(
  new_calendar_ages_BP,
  calibration_curve,
  F14C_outputs = NA
)
```

Arguments

new_calendar_ages_BP

A scalar or vector containing calendar ages (in cal yr BP) at which to interpolate the values (both the means and uncertainties) of the given calibration curve. If not provided (and NA is given), will use the range from the minimum calendar age to the maximum calendar age of the original calibration curve spaced by 1.

calibration_curve

A dataframe which must contain one column calendar_age_BP, and also columns c14_age and c14_sig or f14c and f14c_sig (or both sets). This format matches the curves supplied with this package, e.g., intcal20, intcal13, which contain all 5 columns.

F14C_outputs

TRUE if only $F^{14}C$ concentrations are required, FALSE if only the radiocarbon ages (in ^{14}C yrs BP) are required and NA if both are required for the new curve.

Value

A new dataframe with entries for the interpolated c14_age, and c14_sig, f14c and f14c_sig values at the calendar_age_BP values that were given in new_calendar_ages_BP.

Examples

```
# Interpolate intcal20 at a single calendar age. Generates both 14C ages and F14C scales. InterpolateCalibrationCurve(51020, intcal20)
```

```
# Interpolate intcal20 at two calendar ages. Generates F14C estimates only.
InterpolateCalibrationCurve(c(51017, 51021), intcal20, TRUE)
```

kerr 23

```
# Interpolate intcal20 at two calendar ages. Generate 14C age estimates (cal yr BP) only. InterpolateCalibrationCurve(c(51017, 51021), intcal20, FALSE)
```

- # Interpolate intcal20 at every integer calendar age within the range of dates
- # (for intcal20 this is 0 to 55000 cal yr BP), and create estimates for both radiocarbon scales.
 cal_curve <- InterpolateCalibrationCurve(NA, intcal20)</pre>

kerr

Example real-life data - Irish Rath

Description

255 radiocarbon determinations collated by Kerr and McCormick related to the building and use of raths in Ireland in the early-medieval period.

Reference:

Kerr, T., McCormick, F., 2014. Statistics, sunspots and settlement: influences on sum of probability curves. *Journal of Archaeological Science* **41**, 493–501.

Usage

kerr

Format

kerr:

A data frame with 255 rows and 4 columns:

- c14_age The observed ¹⁴C ages of the samples (in ¹⁴C yr BP)
- c14_sig The uncertainty in the observed ¹⁴C ages reported by the radiocarbon laboratory
- **f14c** The observed F¹⁴C concentrations
- ${\bf f14c_sig}$ The uncertainty in the observed ${\bf F^{14}C}$ concentrations reported by the radiocarbon laboratory

Source

http://doi.org/10.1016/j.jas.2013.09.002

mammuthus

Example real-life data - Mammuthus in Yukon and Alaska

Description

117 radiocarbon determinations collated by Dale Guthrie, R. related to Mammuthus (mammoth) in Yukon and Alaska. Samples are restricted to those between 25,000-6000 14 C yrs BP.

Reference:

Dale Guthrie, R. New carbon dates link climatic change with human colonization and Pleistocene extinctions. *Nature* **441**, 207–209 (2006). https://doi.org/10.1038/nature04604

Usage

mammuthus

Format

mammuthus:

A data frame with 117 rows and 7 columns:

lab_code The sample code for the ¹⁴C laboratory

site_code The site/museum code

location The location of the sample

c14_age The observed ¹⁴C ages of the samples (in ¹⁴C yr BP)

c14_sig The uncertainty in the observed ¹⁴C ages reported by the radiocarbon laboratory

f14c The observed F¹⁴C concentrations

f14c_sig The uncertainty in the observed F¹⁴C concentrations reported by the radiocarbon laboratory

Source

https://doi.org/10.1038/nature04604

PlotCalendarAgeDensityIndividualSample

Plot Posterior Calendar Age Estimate for an Individual Determination after Joint Calibration

Description

Once a joint calibration function (any of PolyaUrnBivarDirichlet, WalkerBivarDirichlet or PPcalibrate) has been run to calibrate a set of related radiocarbon determinations, this function plots the posterior calendar age estimate for a given single determination. Shown are a (direct) histogram of the posterior calendar ages generated by the MCMC chain and also a (smoothed) kernel density estimate obtained using a Gaussian kernel. The highest posterior density (HPD) interval is also shown for the interval width specified (default 2σ).

```
For more information read the vignettes:

vignette("Non-parametric-summed-density", package = "carbondate")

vignette("Poisson-process-modelling", package = "carbondate")
```

Note: The output of this function will provide different results from independent calibration of the determination. By jointly, and simultaneously, calibrating all the related ¹⁴C determinations using the library functions we are able to share the available calendar information between the samples. This should result in improved individual calibration.

Usage

```
PlotCalendarAgeDensityIndividualSample(
  ident,
  output_data,
  calibration_curve = NULL,
  plot_14C_age = TRUE,
  plot_cal_age_scale = "BP",
  hist_resolution = 5,
  density_resolution = 1,
  interval_width = "2sigma",
  bespoke_probability = NA,
  n_burn = NA,
  n_{end} = NA,
  show_hpd_ranges = FALSE,
  show_unmodelled_density = FALSE,
  plot_pretty = TRUE
)
```

Arguments

ident

The individual determination for which you want to plot the posterior density estimate of the calendar age.

output_data

The return value either from one of the Bayesian non-parametric DPMM functions (PolyaUrnBivarDirichlet or WalkerBivarDirichlet); or from the Poisson process modelling function (PPcalibrate).

calibration_curve

This is usually not required since the name of the calibration curve variable is saved in the output data. However, if the variable with this name is no longer in your environment then you should pass the calibration curve here. If provided, this should be a dataframe which should contain at least 3 columns entitled calendar_age, c14_age and c14_sig. This format matches intcal20.

Whether to use the radiocarbon age (14 C yr BP) as the units of the y-axis in the plot_14C_age plot. Defaults to TRUE. If FALSE uses F¹⁴C concentration instead.

plot_cal_age_scale

The calendar scale to use for the x-axis. Allowed values are "BP", "AD" and "BC". The default is "BP" corresponding to plotting in cal yr BP.

hist_resolution

The distance between histogram breaks when plotting the individual posterior calendar age density. Default is 5.

density_resolution

The distance between calendar ages for the returned smoothed calendar age probability. Default is 1.

interval_width The confidence intervals to show for the calibration curve and for the highest posterior density ranges. Choose from one of "1sigma" (68.3%), "2sigma" (95.4%) and "bespoke". Default is "2sigma".

bespoke_probability

The probability to use for the confidence interval if "bespoke" is chosen above. E.g., if 0.95 is chosen, then the 95% confidence interval is calculated. Ignored

if "bespoke" is not chosen. The number of MCMC iterations that should be discarded as burn-in (i.e., con-

sidered to be occurring before the MCMC has converged). This relates to the number of iterations (n_iter) when running the original update functions (not the thinned output_data). Any MCMC iterations before this are not used in the calculations. If not given, the first half of the MCMC chain is discarded. Note: The maximum value that the function will allow is n_iter -100 * n_thin (where n_iter and n_thin are the arguments given to PolyaUrnBivarDirichlet or WalkerBivarDirichlet) which would leave only 100 of the (thinned) values in output_data.

The iteration number of the last sample in output_data to use in the calculations. Assumed to be the total number of (thinned) realisations stored if not given.

show_hpd_ranges

Set to TRUE to also show the highest posterior density (HPD) range on the plot.

show_unmodelled_density

Set to TRUE to also show the unmodelled density (i.e., the result of independent calibration using CalibrateSingleDetermination) on the plot. Default is FALSE.

logical, defaulting to TRUE. If set TRUE then will select pretty plotting margins plot_pretty (that create sufficient space for axis titles and rotates y-axis labels). If FALSE will implement current user values.

Value

A data frame with one column calendar_age_BP containing the calendar ages, and the other column probability containing the (smoothed) kernel density estimate of the probability at that calendar age.

See Also

CalibrateSingleDetermination for independent calibration of a sample against a calibration curve.

n_burn

n_end

PlotConvergenceData 27

Examples

```
# NOTE 1: These examples are shown with a small n_iter to speed up execution.
# When you run ensure n_iter gives convergence (try function default).
# NOTE 2: The examples only show application to PolyaUrnBivarDirichlet output.
# The function can also be used with WalkerBivarDirichlet and PPcalibrate output.
polya_urn_output <- PolyaUrnBivarDirichlet(</pre>
    two_normals$c14_age,
    two_normals$c14_sig,
    intcal20,
    n_{iter} = 500,
    n_{thin} = 2
    show_progress = FALSE)
# Result for 15th determination
PlotCalendarAgeDensityIndividualSample(15, polya_urn_output)
# Now change to show 1 sigma interval for HPD range and calibration curve
# and plot in yr AD
PlotCalendarAgeDensityIndividualSample(
    15,
    polya_urn_output,
    plot_cal_age_scale = "AD",
    interval_width = "1sigma",
    show_hpd_ranges = TRUE,
    show_unmodelled_density = TRUE)
# Plot and then assign the returned probability
posterior_dens <- PlotCalendarAgeDensityIndividualSample(15, polya_urn_output)</pre>
# Use this to find the mean posterior calendar age
weighted.mean(posterior_dens$calendar_age_BP, posterior_dens$probability)
```

PlotConvergenceData

Plot KL Divergence of Predictive Density to Assess Convergence of Bayesian Non-Parametric DPMM Sampler

Description

This plots the Kullback-Leibler (KL) divergence between a fixed (initial/baseline) predictive density and the predictive density calculated from later individual realisations in the MCMC run of one of the Bayesian non-parametric summarisation approach. The divergence from the initial predictive density is plotted as a function of the realisation/iteration number.

This aims to identify when the divergence, from the initial estimate of the shared $f(\theta)$ to the current estimate, has begun to stabilise. Hence, to (informally) assess when the MCMC chain has converged to equilibrium for the shared, underlying, predictive $f(\theta)$.

```
For more information read the vignette:
vignette("determining-convergence", package = "carbondate")
```

Usage

```
PlotConvergenceData(output_data, n_initial = NA)
```

Arguments

tion functions, i.e., PolyaUrnBivarDirichlet or WalkerBivarDirichlet.

n_initial The number of (thinned) realisations to use for the 'initial' predictive shared

density. This predictive density is then compared with the predictive obtained at each subsequent realisation in the (thinned) DPMM output. If not specified, then the minimum of 1000 realisations, or 1 / 10 of the total number of realisations,

will be used.

Value

None

Examples

```
# Plot results for the example two_normal data
# NOTE: This does not show meaningful results as n_iter
# is too small. Try increasing n_iter to 1e5.
polya_urn_output <- PolyaUrnBivarDirichlet(
    two_normals$c14_age,
    two_normals$c14_sig,
    intcal20,
    n_iter = 500,
    show_progress = FALSE)
PlotConvergenceData(polya_urn_output)</pre>
```

PlotGelmanRubinDiagnosticMultiChain

Plot Histogram of the Gelman-Rubin Convergence Diagnostic for Multiple Independent MCMC Chains

Description

This plots a histogram of the potential scale reduction factors (PSRF) for each of the individual posterior calendar age estimates for multiple independent MCMC chains. Achieved by comparing the *within-chain* variance with the *between-chains* variance after n_burn iterations. The PSRF of each sample's posterior calendar age is calculated. If the chain have converged to the target posterior distribution, then PSRF should be close to 1 for all of the samples (a stringent condition is that all values are less than 1.1).

```
For more information read the vignette:
vignette("determining-convergence", package = "carbondate")
```

Usage

PlotGelmanRubinDiagnosticMultiChain(output_data_list, n_burn = NA)

Arguments

```
output_data_list
```

A list, each item containing the return value from one of the updating functions e.g. PolyaUrnBivarDirichlet, WalkerBivarDirichlet or PPcalibrate. The minimum number of elements in the list is 2.

n_burn

The number of MCMC iterations that should be discarded for burn-in. This relates to the total number of iterations n_i ter when running the original update functions (not the thinned output_data). Any MCMC iterations before this are not used in the calculations of the PSRF. If not given, the first half of the MCMC chain is discarded. Note: The maximum value that the function will allow is n_i ter - 100 * n_i thin (where n_i ter and n_i thin are the arguments that were given to PPcalibrate) which would leave only 100 of the (thinned) values in output_data.

Value

None

Examples

PlotGelmanRubinDiagnosticSingleChain

Plot Histogram of the Gelman-Rubin Convergence Diagnostic for a Single MCMC Chain

Description

This plots a histogram of the potential scale reduction factors (PSRF) for each of the individual posterior calendar age estimates within a single MCMC chain. Achieved by splitting the chain into segments after n_burn and comparing the *within-chain* variance with the *between-chains* variance of the segments. The PSRF of each sample's posterior calendar age is calculated. If the chain have converged to the target posterior distribution, then PSRF should be close to 1 for all of the samples (a stringent condition is that all values are less than 1.1).

```
For more information read the vignette:
vignette("determining-convergence", package = "carbondate")
```

Usage

PlotGelmanRubinDiagnosticSingleChain(output_data, n_burn = NA, n_segments = 3)

Arguments

output_data The return value from one of the updating functions, e.g., PolyaUrnBivarDirich-

let, WalkerBivarDirichlet or PPcalibrate.

n_burn The number of MCMC iterations that should be discarded for burn-in. This

relates to the total number of iterations n_iter when running the original update functions (not the thinned output_data). Any MCMC iterations before this are not used in the calculations of the PSRF. If not given, the first half of the MCMC chain is discarded. Note: The maximum value that the function will allow is n_iter - 100 * n_thin (where n_iter and n_thin are the arguments that were given to PPcalibrate) which would leave only 100 of the (thinned) values in

 $output_data.$

n_segments The number of segments to split the chain into. Default is 3, must be a number

between 2 and 10.

Value

None

Examples

```
# Plot results for the example data - n_iter is too small for convergence
# Try increasing n_iter to see the values of the PSRF decrease
polya_urn_output <- PolyaUrnBivarDirichlet(
    two_normals$c14_age,
    two_normals$c14_sig,
    intcal20,
    n_iter = 500,
    show_progress = FALSE)
PlotGelmanRubinDiagnosticSingleChain(polya_urn_output)</pre>
```

PlotNumberOfClusters 31

PlotNumberOfClusters

Plot Number of Calendar Age Clusters Estimated in Bayesian Non-Parametric DPMM Output

Description

Given output from one of the Bayesian non-parametric summarisation functions (either PolyaUrn-BivarDirichlet or WalkerBivarDirichlet) plot the estimated number of calendar age clusters represented by the ¹⁴C samples.

For more information read the vignette: vignette("Non-parametric-summed-density", package = "carbondate")

Usage

PlotNumberOfClusters(output_data, n_burn = NA, n_end = NA)

Arguments

output_data

The return value from one of the Bayesian non-parametric DPMM functions, e.g. PolyaUrnBivarDirichlet or WalkerBivarDirichlet, or a list, each item containing one of these return values. Optionally, the output data can have an extra list item named label which is used to set the label on the plot legend.

n_burn

The number of MCMC iterations that should be discarded as burn-in (i.e., considered to be occurring before the MCMC has converged). This relates to the number of iterations (n_iter) when running the original update functions (not the thinned output_data). Any MCMC iterations before this are not used in the calculations. If not given, the first half of the MCMC chain is discarded. Note: The maximum value that the function will allow is n_iter - 100 * n_thin (where n_iter and n_thin are the arguments given to PolyaUrnBivarDirichlet or WalkerBivarDirichlet) which would leave only 100 of the (thinned) values in output_data.

n_end

The last iteration in the original MCMC chain to use in the calculations. Assumed to be the total number of iterations performed, i.e. n_iter, if not given.

Value

None

See Also

PlotPredictiveCalendarAgeDensity and PlotCalendarAgeDensityIndividualSample for more plotting functions using DPMM output.

Examples

```
# NOTE: these examples are shown with a small n_iter to speed up execution.
# When you run ensure n_iter gives convergence (try function default).
polya_urn_output <- PolyaUrnBivarDirichlet(</pre>
    two_normals$c14_age,
    two_normals$c14_sig,
    intcal20,
    n_{iter} = 500,
    n_{thin} = 2
    show_progress = FALSE)
PlotNumberOfClusters(polya_urn_output)
```

PlotNumberOfInternalChanges

Plot Number of Changepoints in Rate of Sample Occurrence for Poisson Process Model

Description

Given output from the Poisson process fitting function PPcalibrate, plot the posterior distribution for the number of internal changepoints in the underlying rate of sample occurrence (i.e., in $\lambda(t)$) over the period under study.

```
For more information read the vignette:
vignette("Poisson-process-modelling", package = "carbondate")
```

Usage

PlotNumberOfInternalChanges(output_data, n_burn = NA, n_end = NA)

Arguments

output_data The return value from the updating function PPcalibrate. Optionally, the output

data can have an extra list item named label which is used to set the label on

the plot legend.

n burn The number of MCMC iterations that should be discarded as burn-in (i.e., con-

sidered to be occurring before the MCMC has converged). This relates to the number of iterations (n_iter) when running the original update functions (not the thinned output_data). Any MCMC iterations before this are not used in the calculations. If not given, the first half of the MCMC chain is discarded. Note: The maximum value that the function will allow is n_iter - 100 * n_thin (where n_iter and n_thin are the arguments that were given to PPcalibrate) which would leave only 100 of the (thinned) values in output_data.

The last iteration in the original MCMC chain to use in the calculations. Assumed to be the total number of iterations performed, i.e. n_iter, if not given.

n_end

Value

None

Examples

```
# NOTE: This example is shown with a small n_iter to speed up execution.
# Try n_iter and n_posterior_samples as the function defaults.
pp_output <- PPcalibrate(</pre>
   pp_uniform_phase$c14_age,
   pp_uniform_phase$c14_sig,
   intcal20,
   n_{iter} = 1000,
    show_progress = FALSE)
```

PlotNumberOfInternalChanges(pp_output)

PlotPosteriorChangePoints

Plot Calendar Ages of Changes in Rate of Sample Occurrence for Poisson Process Model

Description

Given output from the Poisson process fitting function PPcalibrate, plot the posterior density estimates for the calendar ages at which there are internal changepoints in the rate of sample occurrence $\lambda(t)$. These density estimates are calculated **conditional** upon the number of internal changepoints within the period under study (which is specified as an input to the function).

Having conditioned on the number of changes, n_change, the code will extract all realisations from the the posterior of the MCMC sampler which have that number of internal changepoints in the estimate of $\lambda(t)$. It will then provide density estimates for the (ordered) calendar ages of those internal changepoints. These density estimates are obtained using a Gaussian kernel.

Note: These graphs will become harder to interpret as the specified number of changepoints increases

```
For more information read the vignette:
vignette("Poisson-process-modelling", package = "carbondate")
```

Usage

```
PlotPosteriorChangePoints(
  output_data,
  n_{changes} = c(1, 2, 3),
  plot_cal_age_scale = "BP",
  n_burn = NA,
  n_{end} = NA,
  kernel_bandwidth = NA
)
```

Arguments

output_data The return value from the updating function PPcalibrate. Optionally, the output

data can have an extra list item named label which is used to set the label on

the plot legend.

n_changes Number of internal changepoints to condition on, and plot for. A vector which

can contain at most 4 elements, with values in the range 1 to 6. If not given, then

c(1, 2, 3) will be used.

plot_cal_age_scale

(Optional) The calendar scale to use for the x-axis. Allowed values are "BP", "AD" and "BC". The default is "BP" corresponding to plotting in cal yr BP.

n_burn

The number of MCMC iterations that should be discarded as burn-in (i.e., considered to be occurring before the MCMC has converged). This relates to the number of iterations (n_iter) when running the original update functions (not the thinned output_data). Any MCMC iterations before this are not used in the calculations. If not given, the first half of the MCMC chain is discarded. Note: The maximum value that the function will allow is n_iter - 100 * n_thin (where n_iter and n_thin are the arguments that were given to PP-calibrate) which would leave only 100 of the (thinned) values in output_data.

n_end

The last iteration in the original MCMC chain to use in the calculations. Assumed to be the total number of iterations performed, i.e. n_iter, if not given.

kernel_bandwidth

(Optional) The bandwidth used for the (Gaussian) kernel smoothing of the calendar age densities. If not given, then 1/50th of the overall calendar age range will be used.

Value

None

Examples

```
# NOTE: This example is shown with a small n_iter to speed up execution.
# Try n_iter and n_posterior_samples as the function defaults.

pp_output <- PPcalibrate(
    pp_uniform_phase$c14_age,
    pp_uniform_phase$c14_sig,
    intcal20,
    n_iter = 1000,
    show_progress = FALSE)

# Plot the posterior change points for only 2 or 3 internal changes
PlotPosteriorChangePoints(pp_output, n_changes = c(2, 3))

# Changing the calendar age plotting scale to cal AD
PlotPosteriorChangePoints(pp_output, n_changes = c(2, 3),
    plot_cal_age_scale = "AD")</pre>
```

PlotPosteriorHeights 35

PlotPosteriorHeights Plot Heights of Segments in Rate of Sample Occurrence for Poisson Process Model

Description

Given output from the Poisson process fitting function PPcalibrate, plot the posterior density estimates for the heights (i.e., values) of the piecewise-constant rate $\lambda(t)$ used to model sample occurrence. These density estimates are calculated **conditional** upon the number of internal changepoints within the period under study (which is specified as an input to the function).

Having conditioned on the number of changes, n_change, the code will extract all realisations from the the posterior of the MCMC sampler which have that number of internal changepoints in the estimate of $\lambda(t)$. It will then provide density estimates for the heights (i.e., the value) of the rate function between each of the determined (ordered) changepoints. These density estimates are obtained using a Gaussian kernel.

Note: These graphs will become harder to interpret as the specified number of changepoints increases

```
For more information read the vignette: vignette("Poisson-process-modelling", package = "carbondate")
```

Usage

```
PlotPosteriorHeights(
  output_data,
  n_changes = c(1, 2, 3),
  n_burn = NA,
  n_end = NA,
  kernel_bandwidth = NA
)
```

Arguments

output_data The return value from the updating function PPcalibrate. Optionally, the output

data can have an extra list item named label which is used to set the label on

the plot legend.

n_changes Number of internal changepoints to condition on, and plot for. A vector which can contain at most 4 elements, with values in the range 1 to 6. If not given, then

c(1, 2, 3) will be used.

n_burn The number of MCMC iterations that should be discarded as burn-in (i.e., con-

sidered to be occurring before the MCMC has converged). This relates to the number of iterations (n_iter) when running the original update functions (not the thinned output_data). Any MCMC iterations before this are not used in the calculations. If not given, the first half of the MCMC chain is discarded. Note: The maximum value that the function will allow is n_iter - 100 * n_thin (where n_iter and n_thin are the arguments that were given to PP-calibrate) which would leave only 100 of the (thinned) values in output_data.

36 PlotPosteriorMeanRate

n_end

The last iteration in the original MCMC chain to use in the calculations. Assumed to be the total number of iterations performed, i.e. n_iter, if not given.

kernel_bandwidth

(Optional) The bandwidth used for the (Gaussian) kernel smoothing of the calendar age densities. If not given, 1/50th of the maximum height will be used.

Value

None

Examples

```
# NOTE: This example is shown with a small n_iter to speed up execution.
# Try n_iter and n_posterior_samples as the function defaults.

pp_output <- PPcalibrate(
    pp_uniform_phase$c14_age,
    pp_uniform_phase$c14_sig,
    intcal20,
    n_iter = 1000,
    show_progress = FALSE)

# Plot the posterior heights for only 2 or 3 internal changes
PlotPosteriorHeights(pp_output, n_changes = c(2, 3))</pre>
```

PlotPosteriorMeanRate Plot Posterior Mean Rate of Sample Occurrence for Poisson Process Model

Description

Given output from the Poisson process fitting function PPcalibrate calculate and plot the posterior mean rate of sample occurrence (i.e., the underlying Poisson process rate $\lambda(t)$) together with specified probability intervals, on a given calendar age grid (provided in cal yr BP).

Will show the original set of radiocarbon determinations (those you are modelling/summarising), the chosen calibration curve, and the estimated posterior rate of occurrence $\lambda(t)$ on the same plot. Can also optionally show the posterior mean of each individual sample's calendar age estimate.

Note: If all you are interested in is the value of the posterior mean rate on a grid, without an accompanying plot, you can use FindPosteriorMeanRate instead.

```
For more information read the vignette:
vignette("Poisson-process-modelling", package = "carbondate")
```

Usage

```
PlotPosteriorMeanRate(
  output_data,
  n_posterior_samples = 5000,
```

PlotPosteriorMeanRate 37

```
calibration_curve = NULL,
plot_14C_age = TRUE,
plot_cal_age_scale = "BP",
show_individual_means = TRUE,
show_confidence_intervals = TRUE,
interval_width = "2sigma",
bespoke_probability = NA,
denscale = 3,
resolution = 1,
n_burn = NA,
n_end = NA,
plot_pretty = TRUE
)
```

Arguments

output_data

The return value from the updating function PPcalibrate. Optionally, the output data can have an extra list item named label which is used to set the label on the plot legend.

n_posterior_samples

Number of samples it will draw, after having removed n_burn, from the (thinned) MCMC realisations stored in output_data to estimate the rate $\lambda(t)$. These samples may be repeats if the number of, post burn-in, realisations is less than n_posterior_samples. If not given, 5000 is used.

calibration_curve

This is usually not required since the name of the calibration curve variable is saved in the output data. However, if the variable with this name is no longer in your environment then you should pass the calibration curve here. If provided, this should be a dataframe which should contain at least 3 columns entitled calendar_age, c14_age and c14_sig. This format matches intcal20.

plot_14C_age

Whether to use the radiocarbon age (14 C yr BP) as the units of the y-axis in the plot. Defaults to TRUE. If FALSE uses F^{14} C concentration instead.

plot_cal_age_scale

(Optional) The calendar scale to use for the x-axis. Allowed values are "BP", "AD" and "BC". The default is "BP" corresponding to plotting in cal yr BP.

show_individual_means

(Optional) Whether to calculate and show the mean posterior calendar age estimated for each individual $^{14}\mathrm{C}$ sample on the plot as a rug on the x-axis. Default is TRUE.

show_confidence_intervals

Whether to show the pointwise confidence intervals (at chosen probability level) on the plot. Default is TRUE.

interval_width The confidence intervals to show for both the calibration curve and the predictive density. Choose from one of "1sigma" (68.3%), "2sigma" (95.4%) and "bespoke". Default is "2sigma".

bespoke_probability

The probability to use for the confidence interval if "bespoke" is chosen above.

38 PlotPosteriorMeanRate

E.g., if 0.95 is chosen, then the 95% confidence interval is calculated. Ignored if "bespoke" is not chosen.

denscale (Optional) Whether to scale the vertical range of the Poisson process mean rate

plot relative to the calibration curve plot. Default is 3 which means that the

maximum of the mean rate will be at 1/3 of the height of the plot.

resolution The distance between calendar ages at which to calculate the value of the rate

 $\lambda(t).$ These ages will be created on a regular grid that automatically covers the

calendar period specified in output_data. Default is 1.

n_burn The number of MCMC iterations that should be discarded as burn-in (i.e., con-

sidered to be occurring before the MCMC has converged). This relates to the number of iterations (n_iter) when running the original update functions (not the thinned output_data). Any MCMC iterations before this are not used in the calculations. If not given, the first half of the MCMC chain is discarded. Note: The maximum value that the function will allow is n_iter - 100 * n_thin (where n_iter and n_thin are the arguments that were given to PP-calibrate) which would leave only 100 of the (thinned) values in output_data.

n_end The last iteration in the original MCMC chain to use in the calculations. As-

sumed to be the total number of iterations performed, i.e. n_iter, if not given.

plot_pretty logical, defaulting to TRUE. If set TRUE then will select pretty plotting margins

(that create sufficient space for axis titles and rotates y-axis labels). If FALSE

will implement current user values.

Value

A list, each item containing a data frame of the calendar_age_BP, the rate_mean and the confidence intervals for the rate - rate_ci_lower and rate_ci_upper.

Examples

```
# NOTE: All these examples are shown with a small n_iter and n_posterior_samples
# to speed up execution.
# Try n_iter and n_posterior_samples as the function defaults.
pp_output <- PPcalibrate(</pre>
    pp_uniform_phase$c14_age,
    pp_uniform_phase$c14_sig,
    intcal20,
    n_{iter} = 1000,
    show_progress = FALSE)
# Default plot with 2 sigma interval
PlotPosteriorMeanRate(pp_output, n_posterior_samples = 100)
# Specify an 80% confidence interval
PlotPosteriorMeanRate(
    pp_output,
    interval_width = "bespoke",
    bespoke_probability = 0.8,
    n_posterior_samples = 100)
```

PlotPredictiveCalendarAgeDensity

Plot Predictive Estimate of Shared Calendar Age Density from Bayesian Non-Parametric DPMM Output

Description

Given output from one of the Bayesian non-parametric summarisation functions (either PolyaU-rnBivarDirichlet or WalkerBivarDirichlet) calculate and plot the predictive (summarised/shared) calendar age density and probability intervals on a given calendar age grid (provided in cal yr BP).

Will show the original set of radiocarbon determinations (those you are summarising), the chosen calibration curve, and the summarised predictive calendar age density on the same plot. Can also optionally show the SPD estimate.

Note: If all you are interested in is the estimated value of the predictive density on a grid, without an accompanying plot, you can use FindPredictiveCalendarAgeDensity instead.

For more information read the vignette:

```
vignette("Non-parametric-summed-density", package = "carbondate")
```

Usage

```
PlotPredictiveCalendarAgeDensity(
  output_data,
  n_posterior_samples = 5000,
  calibration_curve = NULL,
  plot_14C_age = TRUE,
  plot_cal_age_scale = "BP",
  show\_SPD = FALSE,
  show_confidence_intervals = TRUE,
  interval_width = "2sigma",
  bespoke_probability = NA,
  denscale = 3,
  resolution = 1,
  n_burn = NA,
  n_{end} = NA,
  plot_pretty = TRUE
)
```

Arguments

output_data

The return value from one of the Bayesian non-parametric DPMM functions, e.g. PolyaUrnBivarDirichlet or WalkerBivarDirichlet, or a list, each item containing one of these return values. Optionally, the output data can have an extra list item named label which is used to set the label on the plot legend.

n_posterior_samples

Number of samples it will draw, after having removed n_burn, from the (thinned) realisations stored in the DPMM outputs to estimate the predictive calendar age

density. These samples may be repeats if the number of, post burn-in, realisations is less than n_posterior_samples. If not given, 5000 is used.

calibration_curve

This is usually not required since the name of the calibration curve variable is saved in the output data. However, if the variable with this name is no longer in your environment then you should pass the calibration curve here. If provided, this should be a dataframe which should contain at least 3 columns entitled calendar_age, c14_age and c14_sig. This format matches intcal20.

plot_14C_age

Whether to use the radiocarbon age (14 C yr BP) as the units of the y-axis in the plot. Defaults to TRUE. If FALSE uses F¹⁴C concentration instead.

plot_cal_age_scale

The calendar scale to use for the x-axis. Allowed values are "BP", "AD" and "BC". The default is "BP" corresponding to plotting in cal yr BP.

show_SPD

Whether to calculate and show the summed probability distribution on the plot (optional). Default is FALSE.

show_confidence_intervals

Whether to show the pointwise confidence intervals (at the chosen probability level) on the plot. Default is TRUE.

interval_width The confidence intervals to show for both the calibration curve and the predictive density. Choose from one of "1sigma" (68.3%), "2sigma" (95.4%) and "bespoke". Default is "2sigma".

bespoke_probability

The probability to use for the confidence interval if "bespoke" is chosen above. E.g., if 0.95 is chosen, then the 95% confidence interval is calculated. Ignored if "bespoke" is not chosen.

denscale

Whether to scale the vertical range of the summarised calendar age density plot relative to the calibration curve plot (optional). Default is 3 which means that the maximum predictive density will be at 1/3 of the height of the plot.

resolution

The distance between calendar ages at which to calculate the predictive shared density. These ages will be created on a regular grid that automatically covers the calendar period of the given set of ¹⁴C samples. Default is 1.

n_burn

The number of MCMC iterations that should be discarded as burn-in (i.e., considered to be occurring before the MCMC has converged). This relates to the number of iterations (n_iter) when running the original update functions (not the thinned output_data). Any MCMC iterations before this are not used in the calculations. If not given, the first half of the MCMC chain is discarded. Note: The maximum value that the function will allow is n_iter -100 * n_thin (where n_iter and n_thin are the arguments given to PolyaUrnBivarDirichlet or WalkerBivarDirichlet) which would leave only 100 of the (thinned) values in output_data.

n_end

The last iteration in the original MCMC chain to use in the calculations. Assumed to be the total number of iterations performed, i.e. n_iter, if not given.

plot_pretty

logical, defaulting to TRUE. If set TRUE then will select pretty plotting margins (that create sufficient space for axis titles and rotates y-axis labels). If FALSE will implement current user values.

Value

A list, each item containing a data frame of the calendar_age_BP, the density_mean and the confidence intervals for the density_ci_lower and density_ci_upper for each set of output data.

See Also

FindPredictiveCalendarAgeDensity if only interested in the estimated value of the predictive density on a grid; PlotNumberOfClusters and PlotCalendarAgeDensityIndividualSample for more plotting functions using DPMM output.

Examples

```
# NOTE: All these examples are shown with a small n_iter and n_posterior_samples
# to speed up execution.
# Try n_iter and n_posterior_samples as the function defaults.
polya_urn_output <- PolyaUrnBivarDirichlet(</pre>
    two_normals$c14_age,
    two_normals$c14_sig,
    intcal20,
   n_{iter} = 500,
    show_progress = FALSE)
walker_output <- WalkerBivarDirichlet(</pre>
    two_normals$c14_age,
    two_normals$c14_sig,
    intcal20,
   n_{iter} = 500,
    show_progress = FALSE)
# Plot results for a single calibration
PlotPredictiveCalendarAgeDensity(polya_urn_output, n_posterior_samples = 50)
# Plot results from two calibrations on the same plot
PlotPredictiveCalendarAgeDensity(
    list(walker_output, polya_urn_output), n_posterior_samples = 50)
# Plot and show the 80% confidence interval, show the SPD, add a custom label
polya_urn_output$label = "My plot"
PlotPredictiveCalendarAgeDensity(
    polya_urn_output,
    n_posterior_samples = 50,
    interval_width = "bespoke",
    bespoke_probability = 0.8,
    show\_SPD = TRUE)
```

PolyaUrnBivarDirichlet

Calibrate and Summarise Multiple Radiocarbon Samples via a Bayesian Non-Parametric DPMM (with Polya Urn Updating)

Description

This function calibrates sets of multiple radiocarbon (¹⁴C) determinations, and simultaneously summarises the resultant calendar age information. This is achieved using Bayesian non-parametric density estimation, providing a statistically-rigorous alternative to summed probability distributions (SPDs).

It takes as an input a set of $^{14}\mathrm{C}$ determinations and associated 1σ uncertainties, as well as the radiocarbon age calibration curve to be used. The samples are assumed to arise from an (unknown) shared calendar age distribution $f(\theta)$ that we would like to estimate, alongside performing calibration of each sample.

The function models the underlying distribution $f(\theta)$ as a Dirichlet process mixture model (DPMM), whereby the samples are considered to arise from an unknown number of distinct clusters. Fitting is achieved via MCMC.

It returns estimates for the calendar age of each individual radiocarbon sample; and broader output (including the means and variances of the underpinning calendar age clusters) that can be used by other library functions to provide a predictive estimate of the shared calendar age density $f(\theta)$.

For more information read the vignette:

```
vignette("Non-parametric-summed-density", package = "carbondate")
```

Note: The library provides two slightly-different update schemes for the MCMC. In this particular function, updating of the DPMM is achieved by a Polya Urn approach (Neal 2000) This is our recommended updating approach based on testing. The alternative, slice-sampled, approach can be found at WalkerBivarDirichlet

References:

Heaton, TJ. 2022. "Non-parametric Calibration of Multiple Related Radiocarbon Determinations and their Calendar Age Summarisation." *Journal of the Royal Statistical Society Series C: Applied Statistics* **71** (5):1918-56. https://doi.org/10.1111/rssc.12599.

Neal, RM. 2000. "Markov Chain Sampling Methods for Dirichlet Process Mixture Models." *Journal of Computational and Graphical Statistics* **9** (2):249 https://doi.org/10.2307/1390653.

Usage

```
PolyaUrnBivarDirichlet(
  rc_determinations,
  rc_sigmas,
  calibration_curve,
  F14C_{inputs} = FALSE,
  n_{iter} = 1e+05,
  n_{thin} = 10,
  use_F14C_space = TRUE,
  slice_width = NA,
  slice_multiplier = 10,
  n_clust = min(10, length(rc_determinations)),
  show_progress = TRUE,
  sensible_initialisation = TRUE,
  lambda = NA,
  nu1 = NA,
  nu2 = NA,
```

```
A = NA,
B = NA,
alpha_shape = NA,
alpha_rate = NA,
mu_phi = NA,
calendar_ages = NA
```

Arguments

rc_determinations

A vector of observed radiocarbon determinations. Can be provided either as ¹⁴C ages (in ¹⁴C yr BP) or as F¹⁴C concentrations.

rc_sigmas

A vector of the (1-sigma) measurement uncertainties for the radiocarbon determinations. Must be the same length as rc_determinations and given in the same units.

calibration_curve

A dataframe which must contain one column calendar_age_BP, and also columns c14_age and c14_sig or f14c and f14c_sig (or both sets). This format matches the curves supplied with this package, e.g., intcal20, intcal13, which contain all 5 columns.

F14C_inputs

TRUE if the provided rc_determinations are $F^{14}C$ concentrations and FALSE if they are radiocarbon ages. Defaults to FALSE.

n_iter

The number of MCMC iterations (optional). Default is 100,000.

n_thin

How much to thin the MCMC output (optional). Will store every n_- thinth iteration. 1 is no thinning, while a larger number will result in more thinning. Default is 10. Must choose an integer greater than 1. Overall number of MCMC realisations stored will be $n_{\rm out} = {\rm floor}(n_{\rm iter}/n_{\rm thin}) + 1$ so do not choose n_- thin too large to ensure there are enough samples from the posterior to use for later inference.

use_F14C_space

If TRUE (default) the calculations within the function are carried out in $F^{14}C$ space. If FALSE they are carried out in ^{14}C age space. We recommend selecting TRUE as, for very old samples, calibrating in $F^{14}C$ space removes the potential affect of asymmetry in the radiocarbon age uncertainty. *Note:* This flag can be set independently of the format/scale on which rc_determinations were originally provided.

slice_width

Parameter for slice sampling (optional). If not given a value is chosen intelligently based on the spread of the initial calendar ages. Must be given if sensible_initialisation is FALSE.

slice_multiplier

Integer parameter for slice sampling (optional). Default is 10. Limits the slice size to slice_multiplier * slice_width.

n_clust

The number of clusters with which to initialise the sampler (optional). Must be less than the length of rc_determinations. Default is 10 or the length of rc_determinations if that is less than 10.

show_progress

Whether to show a progress bar in the console during execution. Default is TRUE.

sensible_initialisation

Whether to use sensible values to initialise the sampler and an automated (adaptive) prior on μ_{ϕ} and (A, B) that is informed by the observed rc_determinations. If this is TRUE (the recommended default), then all the remaining arguments below are ignored.

lambda, nu1, nu2 Hyperparameters for the prior on the mean ϕ_i and precision τ_i of each individual calendar age cluster j:

$$(\phi_i, \tau_i)|\mu_{\phi} \sim \text{NormalGamma}(\mu_{\phi}, \lambda, \nu_1, \nu_2)$$

where μ_{ϕ} is the overall cluster centering. Required if sensible_initialisation is FALSE.

Prior on μ_{ϕ} giving the mean and precision of the overall centering $\mu_{\phi} \sim N(A, B^{-1})$. A, B Required if sensible_initialisation is FALSE.

alpha_shape, alpha_rate

Shape and rate hyperparameters that specify the prior for the Dirichlet Process (DP) concentration, α . This concentration α determines the number of clusters we expect to observe among our n sampled objects. The model places a prior on $\alpha \sim \Gamma(\eta_1, \eta_2)$, where η_1, η_2 are the alpha_shape and alpha_rate. A small α means the DPMM is more concentrated (i.e. we expect fewer calendar age clusters) while a large alpha means it is less less concentrated (i.e. many clusters).

Required if sensible_initialisation is FALSE.

Initial value of the overall cluster centering μ_{ϕ} . Required if sensible_initialisation mu_phi

is FALSE.

The initial estimate for the underlying calendar ages (optional). If supplied, it calendar_ages

must be a vector with the same length as rc_determinations. Required if

sensible_initialisation is FALSE.

Value

A list with 10 items. The first 8 items contain output of the model, each of which has one dimension of size $n_{\text{out}} = \text{floor}(n_{\text{iter}}/n_{\text{thin}}) + 1$. The rows in these items store the state of the MCMC from every n_{thin}^{th} iteration:

cluster_identifiers A list of length n_{out} each entry gives the cluster allocation (an integer between 1 and n_clust) for each observation on the relevant MCMC iteration. Information on the state of these calendar age clusters (means and precisions) can be found in the other output

alpha A double vector of length n_{out} giving the Dirichlet Process concentration parameter α .

n_clust An integer vector of length n_{out} giving the current number of clusters in the model.

phi A list of length n_{out} each entry giving a vector of length n_clust of the means of the current calendar age clusters ϕ_j .

tau A list of length $n_{\rm out}$ each entry giving a vector of length n_clust of the precisions of the current calenadar age cluster τ_i .

observations_per_cluster A list of length n_{out} each entry giving a vector of length n_clust of the number of observations for that cluster.

calendar_ages An n_{out} by n_{obs} integer matrix. Gives the current estimate for the calendar age of each individual observation.

mu_phi A vector of length n_{out} giving the overall centering μ_{ϕ} of the calendar age clusters.

where $n_{\rm obs}$ is the number of radiocarbon observations i.e. the length of rc_determinations.

The remaining items give information about the input data, input parameters (or those calculated using sensible_initialisation) and the update_type

update_type A string that always has the value "Polya Urn".

input_data A list containing the ¹⁴C data used, and the name of the calibration curve used.

input_parameters A list containing the values of the fixed hyperparameters lambda, nu1, nu2, A, B, alpha_shape, alpha_rate and mu_phi, and the slice parameters slice_width and slice_multiplier.

See Also

WalkerBivarDirichlet for our less-preferred MCMC method to update the Bayesian DPMM (otherwise an identical model); and PlotCalendarAgeDensityIndividualSample, PlotPredictiveCalendarAgeDensity and PlotNumberOfClusters to access the model output and estimate the calendar age information.

See also PPcalibrate for an an alternative (similarly rigorous) approach to calibration and summarisation of related radiocarbon determinations using a variable-rate Poisson process

Examples

```
# Note these examples are shown with a small n_iter to speed up execution.
# When you run ensure n_iter gives convergence (try function default).
# Basic usage making use of sensible initialisation to set most values and
# using a saved example data set and the IntCal20 curve.
polya_urn_output <- PolyaUrnBivarDirichlet(</pre>
    two_normals$c14_age,
    two_normals$c14_sig,
    intcal20,
    n_{iter} = 100,
    show_progress = FALSE)
# The radiocarbon determinations can be given as F14C concentrations
polya_urn_output <- PolyaUrnBivarDirichlet(</pre>
    two_normals$f14c,
    two_normals$f14c_sig,
    intcal20,
    F14C_inputs = TRUE,
    n_{iter} = 100,
    show_progress = FALSE)
```

46 PPcalibrate

PPcalibrate	Model Occurrence of Multiple Radiocarbon Samples as a Variable-
	Rate Poisson Process

Description

This function calibrates a set of radiocarbon (¹⁴C) samples, and provides an estimate of how the underlying rate at which the samples occurred varies over calendar time (including any specific changepoints in the rate). The method can be used as an alternative approach to summarise calendar age information contained in a set of related ¹⁴C samples, enabling inference on the latent *activity* rate which led to their creation.

It takes as an input a set of ^{14}C determinations and associated 1σ uncertainties, as well as the radiocarbon age calibration curve to be used. The (calendar age) occurrence of these radiocarbon (^{14}C) samples is modelled as a Poisson process. The underlying rate of this Poisson process $\lambda(t)$, which represents the rate at which the samples occurred, is considered unknown and assumed to vary over calendar time.

Specifically, the sample occurrence rate $\lambda(t)$ is modelled as piecewise constant, but with an unknown number of changepoints, which can occur at unknown times. The value of $\lambda(t)$ between any set of changepoints is also unknown. The function jointly calibrates the given $^{14}\mathrm{C}$ samples under this model, and simultaneously provides an estimate of $\lambda(t)$. Fitting is performed using reversible-jump MCMC within Gibbs.

It returns estimates for the calendar age of each individual radiocarbon sample in the input set; and broader output on the estimated value of $\lambda(t)$ which can be used by other library functions. Analysis of the estimated changepoints in the piecewise $\lambda(t)$ permits wider inference on whether the occurrence rate of samples changed significantly at any particular calendar time and, if so, when and by how much.

```
For more information read the vignette:
vignette("Poisson-process-modelling", package = "carbondate")
```

Usage

```
PPcalibrate(
  rc_determinations,
  rc_sigmas,
  calibration_curve,
  F14C_inputs = FALSE,
  n_iter = 1e+05,
  n_thin = 10,
  use_F14C_space = TRUE,
  show_progress = TRUE,
  calendar_age_range = NA,
  calendar_grid_resolution = 1,
  prior_h_shape = NA,
  prior_h_rate = NA,
  prior_n_internal_changepoints_lambda = 3,
  k_max_internal_changepoints = 30,
```

PPcalibrate 47

```
rescale_factor_rev_jump = 0.9,
bounding_range_prob_cutoff = 0.001,
initial_n_internal_changepoints = 10,
grid_extension_factor = 0.1,
use_fast = TRUE,
fast_approx_prob_cutoff = 0.001
)
```

Arguments

rc_determinations

A vector of observed radiocarbon determinations. Can be provided either as ¹⁴C ages (in ¹⁴C yr BP) or as F¹⁴C concentrations.

rc_sigmas

A vector of the (1-sigma) measurement uncertainties for the radiocarbon determinations. Must be the same length as rc_determinations and given in the same units.

calibration_curve

A dataframe which must contain one column calendar_age_BP, and also columns c14_age and c14_sig or f14c and f14c_sig (or both sets). This format matches the curves supplied with this package, e.g., intcal20, intcal13, which contain all 5 columns.

F14C_inputs

TRUE if the provided rc_determinations are $F^{14}C$ concentrations and FALSE if they are radiocarbon ages. Defaults to FALSE.

n_iter

The number of MCMC iterations (optional). Default is 100,000.

n_thin

How much to thin the MCMC output (optional). Will store every n_thinth iteration. 1 is no thinning, while a larger number will result in more thinning. Default is 10. Must choose an integer greater than 1. Overall number of MCMC realisations stored will be $n_{\rm out} = {\rm floor}(n_{\rm iter}/n_{\rm thin}) + 1$ so do not choose n_thin too large to ensure there are enough samples from the posterior to use for later inference.

use_F14C_space

If TRUE (default) the calculations within the function are carried out in $F^{14}C$ space. If FALSE they are carried out in ^{14}C age space. We recommend selecting TRUE as, for very old samples, calibrating in $F^{14}C$ space removes the potential affect of asymmetry in the radiocarbon age uncertainty. *Note:* This flag can be set independently of the format/scale on which rc_determinations were originally provided.

show_progress Whether to show a progress bar in the console during execution. Default is TRUE. calendar_age_range

(Optional) Overall minimum and maximum calendar ages (in cal yr BP) permitted for the set of radiocarbon samples, i.e., calendar_age_range[1] $< \theta_1, \ldots, \theta_n$ < calendar_age_range[1]. This is used to bound the start and end of the Poisson process (so no events will be permitted to occur outside this interval). If not selected then automated selection will be made based on given rc_determinations and value of bounding_range_prob_cutoff

calendar_grid_resolution

The spacing of the calendar age grid on which to restrict the potential calendar ages of the samples, e.g., calendar ages of samples are limited to being one of

48 PPcalibrate

t, t + resolution, t + 2 * resolution, ... Default is 1 (i.e., all calendar years in the overall calendar range are considered). Primarily used to speed-up code if have large range, when may select larger resolution.

prior_h_shape, prior_h_rate

(Optional) Prior for the value of the Poisson Process rate (the height rate_h) in any specific interval:

 $rate_h \sim Gamma(shape = prior_h_shape, rate = prior_h_rate).$

If they are both NA then prior_h_shape is selected to be 1 (so rate_h follows an Exponential distribution) and prior_h_rate chosen adaptively (internally) to match n_observations.

prior_n_internal_changepoints_lambda

Prior mean for the number of internal changepoints in the rate $\lambda(t)$.

 $n_{internal_changepoints} \sim Po(prior_n_{internal_changepoints_lambda})$

k_max_internal_changepoints

Maximum permitted number of internal changepoints

rescale_factor_rev_jump

Factor weighting probability of dimension change in the reversible jump update step for Poisson process rate_h and rate_s

bounding_range_prob_cutoff

Probability cut-off for choosing the bounds for the potential calendar ages for the observations

initial_n_internal_changepoints

Number of internal changepoints to initialise MCMC sampler with. The default is 10 (so initialise with diffuse state). Will place these initial changepoints uniformly at random within overall calendar age range.

grid_extension_factor

If you adaptively select the calendar_age_range from rc_determinations, how far you wish to extend the grid beyond this adaptive minimum and maximum. The final range will be extended (equally on both sides) to cover (1 + grid_extension_factor) * (calendar_age_range)

use_fast, fast_approx_prob_cutoff

A flag to allow trimming the calendar age likelihood (i.e., reducing the range of calendar ages) for each individual sample to speed up the sampler. If TRUE (default), for each individual sample, those tail calendar ages (in the overall calendar_age_grid) with very small likelihoods will be trimmed (speeding up the updating of the calendar ages). If TRUE the probability cut-off to remove the tails is fast_approx_prob_cutoff.

Value

A list with 7 items. The first 4 items contain output of the model, each of which has one dimension of size $n_{\rm out} = {\rm floor}(n_{\rm iter}/n_{\rm thin}) + 1$. The rows in these items store the state of the MCMC from every $n_{\rm thin}^{\rm th}$ iteration:

rate_s A list of length n_{out} each entry giving the current set of (calendar age) changepoint locations in the piecewise-constant rate $\lambda(t)$.

pp_uniform_phase 49

rate_h A list of length n_{out} each entry giving the current set of heights (values for the rate) in each piecewise-constant section of $\lambda(t)$.

calendar_ages An $n_{\rm out}$ by $n_{\rm obs}$ matrix. Gives the current estimate for the calendar age of each individual observation.

n_internal_changes A vector of length n_{out} giving the current number of internal changes in the value of $\lambda(t)$.

where $n_{\rm obs}$ is the number of radiocarbon observations, i.e., the length of rc_determinations.

The remaining items give information about input data, input parameters (or those calculated) and update_type

update_type A string that always has the value "RJPP".

input_data A list containing the ¹⁴C data used, and the name of the calibration curve used.

input_parameters A list containing the values of the fixed parameters pp_cal_age_range, prior_n_internal_changepo
 k_max_internal_changepoints, prior_h_shape, prior_h_rate, rescale_factor_rev_jump,
 calendar_age_grid, calendar_grid_resolution, n_iter and n_thin.

Examples

```
# NOTE: This example is shown with a small n_iter to speed up execution.
# When you run ensure n_iter gives convergence (try function default).

pp_output <- PPcalibrate(
    pp_uniform_phase$c14_age,
    pp_uniform_phase$c14_sig,
    intcal20,
    n_iter = 100,
    show_progress = FALSE)</pre>
```

pp_uniform_phase

Example artificial data - Uniform Phase

Description

40 simulated radiocarbon determinations for which the underlying calendar ages are drawn (uniformly at random) from the period 550–500 cal yr BP.

$$f(\theta) = U[550, 500]$$

The observational uncertainty of each determination is set to be 15 ¹⁴C yrs.

The corresponding 14 C ages are then simulated based upon the IntCal20 calibration curve (convolved with the 15 14 C yr measurement uncertainty):

$$X_i | \theta_i \sim N(m(\theta_i), \rho(\theta_i)^2 + 15^2),$$

where $m(\theta_i)$ and $\rho(\theta_i)$ are the IntCal20 pointwise means and uncertainties.

This dataset matches that used in the package vignette to illustrate the Poisson process modelling.

50 shcal04

Usage

```
pp_uniform_phase
```

Format

```
pp_uniform_phase:
A data frame with 40 rows and 4 columns:
```

c14 age The simulated ¹⁴C age (in ¹⁴C yr BP)

c14_sig The (fixed) ¹⁴C age measurement uncertainty used in the simulation (set at 15 ¹⁴C yrs)

f14c The corresponding simulated values of F¹⁴C concentration

f14c_sig The (fixed) corresponding F14C measurement uncertainty used in the simulation

shcal04

SHCal04 calibration curve

Description

The SHCal04 Southern Hemisphere radiocarbon age calibration curve on a calendar grid spanning from 11,000–0 cal yr BP (Before Present, 0 cal yr BP corresponds to 1950 CE).

Note: This dataset provides 14 C ages and F^{14} C values on a calendar age grid. This is different from the 14 C ages and Δ^{14} C values provided in oxcal .14c files.

Reference:

FG McCormac, AG Hogg, PG Blackwell, CE Buck, TFG Higham, and PJ Reimer 2004. SHCal04 Southern Hemisphere Calibration 0–11.0 cal kyr BP. *Radiocarbon* **46**(3):1087–1092 https://doi.org/10.1017/S003382220003.

Usage

shcal04

Format

shcal04:

A data frame with 2,202 rows and 5 columns providing the SHCal04 radiocarbon age calibration curve on a calendar grid spanning from 11,000–0 cal yr BP:

```
calendar_age The calendar age (in cal yr BP) c14_age The ^{14}C age (in ^{14}C yr BP) c14_sig The (1-\sigma) uncertainty in the ^{14}C age
```

f14c The ¹⁴C age expressed as F¹⁴C concentration

f14c_sig The $(1-\sigma)$ uncertainty in the $F^{14}C$ concentration

Source

http://doi.org/10.1017/S0033822200033014

shcal13

shcal13

SHCal13 calibration curve

Description

The SHCal13 Southern Hemisphere radiocarbon age calibration curve on a calendar grid spanning from 50,000–0 cal yr BP (Before Present, 0 cal yr BP corresponds to 1950 CE).

Note: This dataset provides 14 C ages and F^{14} C values on a calendar age grid. This is different from the 14 C ages and Δ^{14} C values provided in oxcal .14c files.

Reference:

Alan G Hogg, Quan Hua, Paul G Blackwell, Caitlin E Buck, Thomas P Guilderson, Timothy J Heaton, Mu Niu, Jonathan G Palmer, Paula J Reimer, Ron W Reimer, Christian S M Turney, Susan R H Zimmerman. 2013. SHCal13 Southern Hemisphere Calibration, 0-50,000 Years cal BP. *Radiocarbon* **55**(4):1889–1903 https://doi.org/10.2458/azu_js_rc.55.16783.

Usage

shcal13

Format

shcal13:

A data frame with 5,141 rows and 5 columns providing the SHCal13 radiocarbon age calibration curve on a calendar grid spanning from 50,000–0 cal yr BP:

```
calendar_age The calendar age (in cal yr BP) c14_age The ^{14}C age (in ^{14}C yr BP) c14_sig The (1-\sigma) uncertainty in the ^{14}C age f14c The ^{14}C age expressed as F^{14}C concentration f14c sig The (1-\sigma) uncertainty in the F^{14}C concentration
```

Source

http://doi.org/10.2458/azu_js_rc.55.16783

52 shcal20

shcal20

SHCal20 calibration curve

Description

The SHCal20 Southern Hemisphere radiocarbon age calibration curve on a calendar grid spanning from 55,000–0 cal yr BP (Before Present, 0 cal yr BP corresponds to 1950 CE).

Note: This dataset provides 14 C ages and F^{14} C values on a calendar age grid. This is different from the 14 C ages and Δ^{14} C values provided in oxcal .14c files.

Reference:

Hogg AG, Heaton TJ, Hua Q, Palmer JG, Turney CSM, Southon J, Bayliss A, Blackwell PG, Boswijk G, Bronk Ramsey C, Pearson C, Petchey F, Reimer P, Reimer R, Wacker L. 2020. SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. *Radiocarbon* **62** https://doi.org/10.1017/RDC.2020.59.

Usage

shcal20

Format

shcal20:

A data frame with 9,501 rows and 5 columns providing the SHCal20 radiocarbon age calibration curve on a calendar grid spanning from 55,000–0 cal yr BP:

```
calendar_age The calendar age (in cal yr BP) c14_age The <sup>14</sup>C age (in <sup>14</sup>C yr BP) c14_sig The (1-\sigma) uncertainty in the <sup>14</sup>C age f14c The <sup>14</sup>C age expressed as F<sup>14</sup>C concentration f14c_sig The (1-\sigma) uncertainty in the F<sup>14</sup>C concentration
```

Source

http://doi.org/10.1017/RDC.2020.59

two_normals 53

two_normals

Example artificial data - Mixture of Normal Phases

Description

50 simulated radiocarbon determinations for which the underlying calendar ages are drawn from a mixture of two normals:

$$f(\theta) = 0.45N(3500, 200^2) + 0.55N(5000, 100^2)$$

i.e., a mixture of a normal centred around 3500 cal yr BP; and another (slightly more concentrated/narrower) normal centred around 5000 cal yr BP.

The corresponding 50 radiocarbon ages were then simulated using the IntCal20 calibration curve incorporating both the uncertainty in the calibration curve and a hypothetical measurement uncertainty:

$$X_i | \theta_i \sim N(m(\theta_i), \rho(\theta_i)^2 + \sigma_{i, \text{lab}}^2),$$

where $m(\theta_i)$ and $\rho(\theta_i)$ are the IntCal20 pointwise means and uncertainties; and $\sigma_{i,\text{lab}}$, the simulated laboratory measurement uncertainty, was fixed at a common value of 25 14 C yrs.

This dataset is included simply to give some quick-to-run examples.

Usage

two_normals

Format

two normals:

A data frame with 50 rows and 4 columns:

c14 age The simulated ¹⁴C age (in ¹⁴C yr BP)

c14_sig The (fixed) ¹⁴C age measurement uncertainty used in the simulation (set at 25 ¹⁴C yrs)

f14c The corresponding simulated values of F¹⁴C concentration

f14c_sig The (fixed) corresponding F14C measurement uncertainty used in the simulation

Examples

```
# Plotting calendar age density underlying two_normals
# Useful for comparisons against estimation techniques
weights_true <- c(0.45, 0.55)
cluster_means_true_calBP <- c(3500, 5000)
cluster_precisions_true <- 1 / c(200, 100)^2</pre>
# Create mixture density
truedens <- function(t, w, truemean, trueprec) {
  dens <- 0
  for(i in 1:length(w)) {</pre>
```

WalkerBivarDirichlet Calibrate and Summarise Multiple Radiocarbon Samples via a Bayesian Non-Parametric DPMM (with Walker Updating)

Description

This function calibrates sets of multiple radiocarbon (¹⁴C) determinations, and simultaneously summarises the resultant calendar age information. This is achieved using Bayesian non-parametric density estimation, providing a statistically-rigorous alternative to summed probability distributions (SPDs).

It takes as an input a set of $^{14}\mathrm{C}$ determinations and associated 1σ uncertainties, as well as the radiocarbon age calibration curve to be used. The samples are assumed to arise from an (unknown) shared calendar age distribution $f(\theta)$ that we would like to estimate, alongside performing calibration of each sample.

The function models the underlying distribution $f(\theta)$ as a Dirichlet process mixture model (DPMM), whereby the samples are considered to arise from an unknown number of distinct clusters. Fitting is achieved via MCMC.

It returns estimates for the calendar age of each individual radiocarbon sample; and broader output (the weights, means and variances of the underpinning calendar age clusters) that can be used by other library functions to provide a predictive estimate of the shared calendar age density $f(\theta)$.

For more information read the vignette:

```
vignette("Non-parametric-summed-density", package = "carbondate")
```

Note: The library provides two slightly-different update schemes for the MCMC. In this particular function, updating of the DPMM is achieved by slice sampling (Walker 2007). We recommend use of the alternative to this, implemented at PolyaUrnBivarDirichlet

Reference:

Heaton, TJ. 2022. "Non-parametric Calibration of Multiple Related Radiocarbon Determinations

and their Calendar Age Summarisation." *Journal of the Royal Statistical Society Series C: Applied Statistics* **71** (5):1918-56. https://doi.org/10.1111/rssc.12599.

Walker, SG. 2007. "Sampling the Dirichlet Mixture Model with Slices." *Communications in Statistics - Simulation and Computation* **36** (1):45-54. https://doi.org/10.1080/03610910601096262.

Usage

```
WalkerBivarDirichlet(
  rc_determinations,
  rc_sigmas,
  calibration_curve,
  F14C_inputs = FALSE,
  n_{iter} = 1e+05,
  n_{thin} = 10,
  use_F14C_space = TRUE,
  slice_width = NA,
  slice_multiplier = 10,
  show_progress = TRUE,
  sensible_initialisation = TRUE,
  lambda = NA,
  nu1 = NA,
  nu2 = NA,
  A = NA
 B = NA
  alpha_shape = NA,
  alpha_rate = NA,
 mu_phi = NA,
  calendar_ages = NA,
  n_clust = min(10, length(rc_determinations))
)
```

Arguments

rc determinations

A vector of observed radiocarbon determinations. Can be provided either as ¹⁴C ages (in ¹⁴C yr BP) or as F¹⁴C concentrations.

rc_sigmas

A vector of the (1-sigma) measurement uncertainties for the radiocarbon determinations. Must be the same length as rc_determinations and given in the same units.

calibration_curve

A dataframe which must contain one column calendar_age_BP, and also columns c14_age and c14_sig or f14c and f14c_sig (or both sets). This format matches the curves supplied with this package, e.g., intcal20, intcal13, which contain all 5 columns.

F14C_inputs

TRUE if the provided rc_determinations are $F^{14}C$ concentrations and FALSE if they are radiocarbon ages. Defaults to FALSE.

n_iter

The number of MCMC iterations (optional). Default is 100,000.

n_thin

How much to thin the MCMC output (optional). Will store every n_thinth iteration. 1 is no thinning, while a larger number will result in more thinning. Default is 10. Must choose an integer greater than 1. Overall number of MCMC realisations stored will be $n_{\text{out}} = \text{floor}(n_{\text{iter}}/n_{\text{thin}}) + 1$ so do not choose n_thin too large to ensure there are enough samples from the posterior to use for later inference.

use_F14C_space If TRUE (default) the calculations within the function are carried out in F14C space. If FALSE they are carried out in ¹⁴C age space. We recommend selecting TRUE as, for very old samples, calibrating in F¹⁴C space removes the potential affect of asymmetry in the radiocarbon age uncertainty. Note: This flag can be set independently of the format/scale on which rc_determinations were originally provided.

slice_width

Parameter for slice sampling (optional). If not given a value is chosen intelligently based on the spread of the initial calendar ages. Must be given if sensible_initialisation is FALSE.

slice_multiplier

Integer parameter for slice sampling (optional). Default is 10. Limits the slice size to slice_multiplier * slice_width.

show_progress Whether to show a progress bar in the console during execution. Default is TRUE. sensible initialisation

> Whether to use sensible values to initialise the sampler and an automated (adaptive) prior on μ_{ϕ} and (A, B) that is informed by the observed rc_determinations. If this is TRUE (the recommended default), then all the remaining arguments below are ignored.

lambda, nu1, nu2 Hyperparameters for the prior on the mean ϕ_i and precision τ_i of each individual calendar age cluster i:

$$(\phi_i, \tau_i)|\mu_{\phi} \sim \text{NormalGamma}(\mu_{\phi}, \lambda, \nu_1, \nu_2)$$

where μ_{ϕ} is the overall cluster centering. Required if sensible_initialisation is FALSE.

A, B

Prior on μ_{ϕ} giving the mean and precision of the overall centering $\mu_{\phi} \sim N(A, B^{-1})$. Required if sensible_initialisation is FALSE.

alpha_shape, alpha_rate

Shape and rate hyperparameters that specify the prior for the Dirichlet Process (DP) concentration, α . This concentration α determines the number of clusters we expect to observe among our n sampled objects. The model places a prior on $\alpha \sim \Gamma(\eta_1, \eta_2)$, where η_1, η_2 are the alpha_shape and alpha_rate. A small α means the DPMM is more concentrated (i.e. we expect fewer calendar age clusters) while a large alpha means it is less less concentrated (i.e. many clusters). Required if sensible_initialisation is FALSE.

mu_phi

Initial value of the overall cluster centering μ_{ϕ} . Required if sensible_initialisation is FALSE.

calendar_ages

The initial estimate for the underlying calendar ages (optional). If supplied, it must be a vector with the same length as rc_determinations. Required if sensible_initialisation is FALSE.

n_clust

The number of clusters with which to initialise the sampler (optional). Must be less than the length of rc_determinations. Default is 10 or the length of rc_determinations if that is less than 10.

Value

A list with 11 items. The first 8 items contain output of the model, each of which has one dimension of size $n_{\text{out}} = \text{floor}(n_{\text{iter}}/n_{\text{thin}}) + 1$. The rows in these items store the state of the MCMC from every n_{thin} it iteration:

cluster_identifiers An $n_{\rm out}$ by $n_{\rm obs}$ integer matrix. Provides the cluster allocation (an integer between 1 and n_clust) for each observation on the relevant MCMC iteration. Information on the state of these calendar age clusters (means, precisions, and weights) can be found in the other output items.

alpha A double vector of length n_{out} giving the Dirichlet Process concentration parameter α .

 n_{clust} An integer vector of length n_{out} giving the current number of clusters in the model.

phi A list of length n_{out} each entry giving a vector of the means of the current calendar age clusters ϕ_i .

tau A list of length n_{out} each entry giving a vector of the precisions of the current calendar age clusters τ_i .

weight A list of length n_{out} each entry giving the mixing weights of each calendar age cluster.

calendar_ages An n_{out} by n_{obs} integer matrix. Gives the current estimate for the calendar age of each individual observation.

mu_phi A vector of length $n_{\rm out}$ giving the overall centering μ_{ϕ} of the calendar age clusters.

where $n_{\rm obs}$ is the number of radiocarbon observations, i.e., the length of rc_determinations.

The remaining items give information about the input data, input parameters (or those calculated using sensible_initialisation) and the update_type

update_type A string that always has the value "Walker".

input_data A list containing the ¹⁴C data used, and the name of the calibration curve used.

input_parameters A list containing the values of the fixed hyperparameters lambda, nu1, nu2, A, B, alpha_shape, and alpha_rate, and the slice parameters slice_width and slice_multiplier.

See Also

PolyaUrnBivarDirichlet for our preferred MCMC method to update the Bayesian DPMM (otherwise an identical model); and PlotCalendarAgeDensityIndividualSample, PlotPredictiveCalendarAgeDensity and PlotNumberOfClusters to access the model output and estimate the calendar age information.

See also PPcalibrate for an an alternative (similarly rigorous) approach to calibration and summarisation of related radiocarbon determinations using a variable-rate Poisson process

Examples

```
# NOTE: These examples are shown with a small n_iter to speed up execution.
# When you run ensure n_iter gives convergence (try function default).
walker_output <- WalkerBivarDirichlet(</pre>
    two_normals$c14_age,
    two_normals$c14_sig,
    intcal20,
    n_{iter} = 100,
    show_progress = FALSE)
# The radiocarbon determinations can be given as F14C concentrations
walker_output <- WalkerBivarDirichlet(</pre>
    two_normals$f14c,
    two_normals$f14c_sig,
    intcal20,
    F14C_inputs = TRUE,
    n_{iter} = 100,
    show_progress = FALSE)
```

Index

* datasets	intcal04,17
alces, 3	intcal09, 18
armit, 3	intcal13, 6, 14, 19, 22, 43, 47, 55
bison, 4	intcal 20, 6, 14, 20, 22, 25, 37, 40, 43, 47, 55
buchanan, 5	intcal98, 21
cervus, 8	InterpolateCalibrationCurve, 22
equus, 9	interpolatecalibrationcurve, 22
human, 17	kerr, 23
intcal04, 17	mammuthus, 24
intcal09, 18	,
intcal13, 19	PlotCalendarAgeDensityIndividualSample,
intcal20, 20	24, 31, 41, 45, 57
intcal98, 21	PlotConvergenceData, 27
kerr, 23	PlotGelmanRubinDiagnosticMultiChain,
mammuthus, 24	28
pp_uniform_phase, 49	PlotGelmanRubinDiagnosticSingleChain,
shca104, 50	29
shcal13, 51	PlotNumberOfClusters, 31, 41, 45, 57
shcal20, 52	PlotNumberOfInternalChanges, 32
two_normals, 53	PlotPosteriorChangePoints, 33
	PlotPosteriorHeights, 35
alces, 3	PlotPosteriorMeanRate, 9, 11, 36
armit, 3	PlotPredictiveCalendarAgeDensity, 11,
	12, 31, 39, 45, 57
bison, 4	PolyaUrnBivarDirichlet, <i>11-13</i> , <i>15</i> , <i>25</i> , <i>26</i> ,
buchanan, 5	28–31, 39, 40, 41, 54, 57
	pp_uniform_phase, 49
CalibrateSingleDetermination, 5, 26	PPcalibrate, 9, 10, 13, 15, 25, 29, 30, 32–38,
cervus, 8	45, 46, 57
	., ., .,
equus, 9	shcal04, 50
· · · · · · · · · · · · · · · · ·	shcal13, 51
FindPosteriorMeanRate, 9, 36	shcal20, 52
FindPredictiveCalendarAgeDensity, 11,	
39, 41	two_normals, 53
FindSummedProbabilityDistribution, 13	
	WalkerBivarDirichlet, <i>11–13</i> , <i>15</i> , <i>25</i> , <i>26</i> ,
GenerateOxcalCode, 15	28–31, 39, 40, 42, 45, 54
human 17	
human, 17	